AISIS2019
21-25 October, 2019
Universidad Nacional Autónoma de México, Mexico City, México
published January 28, 2021
Entries on ADS

The recent progress in Artificial Intelligence and Machine Learning has provided new ways to process large data sets. The new techniques are particularly powerful when dealing with unstructured data or data with complex, non-linear relationships, which are hard to model and analyse with traditional, statistical tools. This has triggered a flurry of activities both in industry and science, developing methods to tackle problems which used to be impossible or extremely hard to deal with.

 

Due to this situation, we are proposing to organise a meeting where the following key elements would be covered:

The meeting is oriented towards scientists and educators as well as industry and policy makers in R&D.

 

Editorial Board

 

Boris Escalante , CViCom-UNAM

Federico Carminati , CERN

Guy Paic , ICN-UNAM

Lukas Nellen , ICN-UNAM

Rafael Mayo , CIEMAT

Steven Schramm , University of Geneva

Zeljko Ivezic , University of Washington

Editorial Board

  • Gergely Gábor Barnaföldi
    Wigner Research Centre for Physics
conference main image
Sessions
Preface
Day 1
Day 2
Day 4
Day 5
Preface
Editor’s Note for the Proceedings of the Artificial Intelligence for Science, Industry and Society – AISIS2019
G.G. Barnaföldi, L. Nellen and G. Paic
Day 1
Galaxy Morphology classification using CNN
J.A. Vázquez-Mata, H.M. Hernandez-Toledo and L.C. Mascherpa
Generative Model Study for 1+1d-Complex Scalar Field Theory
K. Zhou, G. Endrodi, L.G. Pang and H. Stoecker
Studying the parton content of the proton with deep learning models
J.M. Cruz Martinez, S. Carrazza and R. Stegeman
Online Estimation of Particle Track Parameters based on Neural Networks for the Belle II Trigger System
S. Baehr, K.L. Unger, J. Becker, F. Meggendorfer, S. Skambraks and C. Kiesling
Generative Adversarial Networks for Fast Simulation: distributed training and generalisation
F. Carminati, S. Vallecorsa, G. Khattak, V. Codreanu, D. Podareanu, M. Cai, V. Saletore and H. Pabst
Portraying Double Higgs at the Large Hadron Collider
M. Kim, J. Kim, K.C. Kong, K.T. Matchev and M. Park
Day 2
Trustworthy AI. The AI4EU approach
U. Cortés, A. Cortés and C. Barrué
Regulating Emerging Technologies: Opportunities and Challenges for Latin America
M. Stankovic and N. Neftenov
Deep learning for cosmology
C. Escamilla-Rivera
A machine learning approach for the feature extraction of pulmonary nodules
C.I. Loeza Mejía, R.R. Biswal and G. Fernandez Lambert
Skin Lesion Detection in Dermatological Images using Deep Learning
J.C. Moreno-Tagle, J. Olveres and B. Escalante-Ramírez
QUA³CK - A Machine Learning Development Process
S.C. Stock, J. Becker, D. Grimm, T. Hotfilter, G. Molinar, M. Stang and W. Stork
Regularization methods vs large training sets
J.J. Vega, H. Carrillo-Calvet and J.L. Jiménez-Andrade
Day 4
Large-Scale Scientific endeavours: the production and dissemination of advance computer sciences knowledge
A. Sanchez Pineda
Machine Learning-Based System for the Availability and Reliability Assessment and Management of Critical Infrastructures (CASO)
Day 5
Robotics, AI and Machine Vision
J. Savage, A. Nakayama and C. Sarmiento
Machine learning in accelerator physics: applications at the CERN Large Hadron Collider
F. Van Der Veken, G. Azzopardi, F. Blanc, L. Coyle, E. Fol, M. Giovannozzi, T. Pieloni, S. Redaelli, B.M. Salvachua Ferrando, M. Schenk, R. Tomas Garcia and G. Valentino
Policies for Artificial Intelligence in Science and Innovation
Quantum Computing Future-Proofing What Lies Beyond SuperComputing
S.L. Hamilton