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This paper presents a compilation of the accumulated development in the Bio-Robotics labora-
tory of the Engineering Faculty at UNAM. The techniques used to build robotic service systems
are briefly mentioned. In particular, a line of research has been developed using most of them
interdependently in what is called in a hybrid system ViRBot (VIrtual and Real roBOt sysTem);
a system to operate mobile robots.
ViRBot is an abstraction system integrated into four specialized layers; Input, planning, knowl-
edge management, and execution to provide intelligence to a mechatronic agent to execute the
service in domestic environments. This project has been developed incrementally with the par-
ticipation of students and profesors. Currently, the ViRBot system inter-operates with ROS and
together, they form an intelligent systems development platform for computer vision, digital sig-
nal processing, automatic planning, automatic control and human-robot interaction.
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1. Introduction

Nowadays robots are interacting more and more with people in everyday life, because of this,
robots are becoming an important part of human society. Robots are being used on different fields
and activities such as assistants, pets, toys, tour guides, personal service and are even sent to space
to perform complex or dangerous tasks.

Specialists are not just betting on building robots that only perform specific tasks but also
robots that are able to widely participate on human societies, are more agreeable and can fulfill
humans will [1]. In general terms, human beings prefer to interact with robots in a similar way
they do with other humans, that is why interactive robots are beginning to be very popular.

"Interactive robots" is used to describe robots in which social interaction plays a leading role
on contrast with those that use conventional human-robot interaction (such as teleoperated robots).
To achieve this kind of interaction, robots need to perform a certain degree of adaptability and
flexibility, and sometimes is desirable the robot develops its own skills as time goes by.

These are the reasons why robots now need more complex cognitive skills in order to operate
efficiently and safely on naturally human populated environments and to achieve higher human
cooperation and communication levels.

Even though interactive robots are already being successfully used, there is still so much left
to do, for instance, if we want robots to be accepted as “natural beings”to interact with, they need
to show sophisticated social skills like context and social convention recognition. So now behavior
design, appearance, cognitive and social skills are becoming a challenge that requires a series of
interdisciplinary knowledge and abilities.

There is a need for reliable Human-Robot interaction systems as experienced by the prolif-
eration of robotics’ competitions that exalt the robots social interaction with humans, such as the
Robocup and Rocking in the league @Home. The goal of this league is to promote the development
of real-world applications and human-machine interaction with autonomous robots, or as they put
it: “The RoboCup@Home league aims to develop service and assistive robot technology with high
relevance for future personal domestic applications”[2].

2. Robotics Architectures

There are many different approaches when developing a robotic architecture; some of the most
important are:

• Traditional

• Reactive
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• Probabilistic

• Hybrid

2.1 Traditional Architectures

Traditional robotics architectures have distinctive features: They have a representation of the
environment, with a symbolic representation of the objects in each room (Figure 1a). These are
represented by polygons where they have their vertices xi, yi, ordered clockwise, these polygons
separate the occupied space and the free space where the robot can navigate (Figure 1b).

(a) Environment [3]. (b) Polygons.

Figure 1: Environment representation

Movements and actions are planned using traditional artificial intelligence techniques such as
search in topological networks (Figures 2a and 2b) where the basic problem is: Given a starting
point (node), goal point (node) and a map of nodes and connections, find some path or find the
“best” path (maybe shortest) and traverse it.

(a) Global Path [3]. (b) Local paths for each room.

Figure 2: Search in topological networks
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These AI searching techniques can be summarized according to the goal they pursuit. Nev-
ertheless, there are some cons of these architectures as they have a serial organization (Figure 3).
If one module fails, the entire system fails; this type of systems are not suitable for dynamic en-
vironments or for robots that have errors in movement and sensing. The robot Shakey was the
first example of this architecture, developed from approximately 1966 through 1972 at Stanford
University.

Figure 3: Serial organization.

2.2 Reactive Architectures

Reactive robotics architectures are based on the behavior of insects and do not need any rep-
resentation of the environment and do not use action or movement planning. These architectures
are suitable for dynamic environments with sensing errors and are based on behaviors running in
parallel. These behaviors are represented using stimulus-response or SR diagrams (Figure 4).

Figure 4: SR diagrams.

The output of each behavior must be instantaneous from the moment there is an entry. Be-
haviors are independent of each other and can be designed using zero order logic, state machines,
potential fields, neural networks, etc.

2.2.1 Behaviours

On Zero Order Logic behaviour’s design, the input sensors’ values are checked and if they
comply with a certain property, an output is generated, which lasts a certain time. These behaviors
have no memory.

There are techniques without memory such as potential attractive and repulsive fields (Figure
5a) and neural networks (Figure 5b) or with memory like state machines algorithms (Figure 6a) or
recurrent artificial neural networks (Figure 6b).
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(a) Potential attractive and repulsive fields

(b) Reactive behaviors without memory using neural
networks.

Figure 5: Techniques without memory

(a) Reactive behaviours using State Machine Algorithms.
(b) Reactive behaviours using recurrent ar-
tificial neural networks.

Figure 6: Techniques with memory

The SR can be combined in different structures by connecting them in parallel by adding the
output of each of them or selecting one of the outputs using an arbiter (Figure 7).

Figure 7: Combining SR structures

2.3 Probabilistic Architectures

Probabilistic robotics architectures are based on the concept that the robot’s sensing of the
environment and its movements are dependent on random variables, which can be manipulated us-
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ing probabilistic concepts, for instance: Hidden Markov Models (HMM), Particle Filters, Markov
Decision Processes, etc (Figure 8).

Figure 8: Using probabilistic architectures

2.4 Hybrid Architectures

On these kind of architectures, traditional, reactive and probabilistic architectures are com-
bined to replace the deficiencies of each of them (Figure 9).

Figure 9: Hybrid robotics architectures.

3. Virtual Real Robot (ViRBot)

The VIrtual and Real roBOt sysTem (ViRBot) [4] is a hybrid robotics architecture whose goal
is to operate autonomous robots that carry out daily service jobs in houses, offices and factories.
ViRBot is being used by our robots: Justina (Figure 10a), a service robot created at our laboratory
(bio-robotics lab UNAM) and Takeshi (Figure 10b), a Human Support Robot (HSR) from Toyota.

As service robots, Justina and Takeshi should be able to perform the following tasks:

• Autonomous navigation and unknown and dynamic obstacle avoidance.
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(a) Robot Justina.

(b) Robot Takeshi (Toyota HSR)

Figure 10: Our Laboratory’s Robots

• Object placement and object recognition without artificial marks.

• Person detection, recognition and tracking.

• Speech recognition and natural language understanding (NLU).

• Autonomous mapping.

ViRBot divides the operation of the service robot into four general layers: Input, Planning,
Knowledge Management, and Execution (Figure 11). Each layer combines traditional, reactive,
and probabilistic techniques to solve the tasks required from a service robot, such as safe and ro-
bust autonomous navigation in dynamic environments; obstacle avoidance; object detection, recog-
nition, and manipulation; people detection, recognition, and tracking; and human–robot interaction
via natural language [5]. By combining symbolic AI with digital signal processing techniques, a
good performance in a service robot has been obtained.

In the following sub sections, we will describe most relevant VIRBOT modules categorized
by layer.

3.1 Input Layer

This layer process the data from the robot’s internal and external sensors (in a series of mod-
ules), they provide information of the internal state of the robot, as well as, the external world
where the robot interacts. Some of our robots designs have lasers, sonars, infrared, microphones
and stereo and RGB-D cameras.

Digital signal processing techniques are applied to the data provided by the internal and exter-
nal sensors to obtain a symbolic representation of the data, as well as, to recognize and to process
voice and visual data. Pattern recognition techniques are applied to create models of objects, places
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Figure 11: ViRBot architecture.

and persons that interact with the robot. To recognize objects, people and places using RGB-D
cameras, vision systems that are robust to partial occlusions, scale and rotation changes are used.

The Human/Robot Interface subsystem in the ViRbot architecture is responsible of recogniz-
ing and processing voice and gesture commands, meaning that communication between the user
and the robot can be through voice and manual gestures, the robot responds using synthetic voice
and simple facial expressions and is able to perform speech recognition (Figure 12).

The Human/Robot Interface has tree modules: Natural Language Understanding, Speech Gen-
eration and Robot’s Facial Expressions. The natural language understanding module finds a sym-
bolic representation of spoken commands given to a robot [6]. It consists of a speech recognition
system coupled with Conceptual Dependency [7] techniques (Conceptual Dependency is a theory
developed by Schank for representing meaning). For instance, given these phrases:

• "Robot, give the newspaper to Dad"

• "Please bring me the newspaper that is there" (Dad is giving the order to the robot)
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Figure 12: Speech Recognition System.

Both phrases are represented using the following Conceptual Dependency primitive:

(ATRANS (ACTOR Robot) (OBJECT newspaper) (TO Dad) (FROM newspaper-place))

With this symbolic representation a belief is generated, and a planner makes an action plan to
achieve what the robot is being asked for. With the symbolic representation, the perception module
generates a series of beliefs, that represent the state of the environment where the robot interacts.

3.2 Planning Layer

This layer is responsible of generating plans at a high level of abstraction and performing
global reasoning. Beliefs generated by the perception module are validated in this module with
information of the Knowledge Management layer. Once validated or recognized, a belief is consid-
ered knowledge and either stored or used to trigger the Action Planner, which will generate a plan
of action or sequence of physical operations to achieve the desired goals. However, if something
unexpected happens while executing a plan, the Goal Activator will be notified,interrupting the
Action Planner and triggering the generation of a new plan (Figure 13).

3.3 Knowledge Management Layer

This layer involves all modules that store and provide access to the robot’s knowledge. Such
knowledge, which may not be symbolic, ranges from raw and probabilistic maps, to semantic
knowledge of the language. The cartographer module has different types of maps for the represen-
tation of the environment (Figure 14), they are created using SLAM techniques.

In the world model module there is a representation of the objects, people and places where the
robot interacts and the relationships that exist between them. There are 5 structures that represent
objects, rooms, furniture, humans and the robot. All this information is updated by the input layer
and by the actions of the robot.

Example: (human (name Mother) (room studio) (zone couch) (objects book) (pose 1.8 2.0 0.5)
(locations main-bedroom) )
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Figure 13: Action Planning.

(a) Raw map. (b) Symbolic map. (c) Topological map.

Figure 14: Types of maps

For the knowledge base module CLIPS [8] (a rule-based system from NASA) is used to rep-
resent robot knowledge by production rules, which correspond to the actions that the agent would
do if certain conditions are met. For instance:

Shadow Rule{
If there are trees around the robot’s path and it is a clear day then there will be a shadow in the
path.
}

In the Learning module genetic algorithms and programming are used, the goal is to use an
optimization algorithm such as genetic algorithms (GA), to find the best robot behaviors to avoid
obstacles while they tried to reach a destination (Figure 15). On this layer also some probabilistic
methods are used like Markov chains and Bayesian classifiers as well as clustering (K-means, Vec-
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tor Quantization), Artificial Neural Networks and Reinforcement Learning.

Figure 15: Genetic algorithms and programming.

The use of simulators for Robot Learning is very beneficial, for instance, with simulated im-
ages the robot is trained to navigate in new environments while it is in resting mode (Figure 16).

Figure 16: Gazebo 3D robot simulator integrated with a physics engine.

3.4 Execution Layer

This layer executes the actions and movements plans and it checks that they are executed
accordingly. At its core, the Bank of Procedures encapsulates a set of hardwired functions, repre-
sented by state machines, and are used to partially solve specific problems, finding persons, object
manipulation, etc. The executor uses these bank of procedures to execute a plan. Behavior methods
are used to avoid obstacles not contemplated by the movements planner (Figure 17). The behavior
methods are state machines, potential fields and neural networks.

10



P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
4
3

Robotics, AI and Machine Vision Jesus Savage

Figure 17: Obstacle avoidance.

Control algorithms, like PID, are used to control the operation of the virtual and real actuators
(Figure 18).

Figure 18: Control algorithms.

4. Contributions from Biorobotics laboratory members

Our laboratory members have contributed to ViRBot by developing some projects and adapting
them to the architecture. Sorted by the related ViRBot layer we can mention the following ones:

• Input Layer

– "Training New Objects in a Deep Neural Network Using YOLO" by Edgar Silva
(Figure 19)

– "Finding persons and their actions in the environment using deep neural networks"
by Edgar Vazquez (Figure 20)

– "Scene Classification and Understanding" by Hugo Leon (Figure 21 )

• Knowledge Management Layer (Robot Learning using simulators)

– "The Kalman filter and deep neural networks used to estimate the robot’s position
and orientation" by Diego Cordero (Figure 22).

– "Gazebo 3D robot simulator integrated with a physics engine" by Oscar Fuentes (Fig-
ure 16).
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Figure 19: Training New Objects in a Deep Neural Network Using YOLO

Figure 20: Finding persons and their actions in the environment using deep neural networks

(a) Indoor segmentation and support infer-
ence [9].

Figure 21: Scene Classification and Understanding.

– "The House Of inteRactions THOR", Allen Institute for Artificial Intelligence [10]
simulator used to do reinforcement learning [11] and 3D perception for robot’s naviga-
tion. Extended by Adrian Sarmiento (Figure 23)

– "Robot learn how to place objects under various obstacle layouts and illumination
conditions using Neural Networks" by Angelica Nakayama (Figure 24).

Other projects are currently under design or development, for instance, "Image Synthesis with
Generative Adversarial Nets (GAN)", with synthetic images the robot is trained to navigate in new
environments while it is in resting mode. (Figure 25).

5. Tests and results

In our laboratory there have been various robots designed, developed and manufactured by
Pumas Team members, some of the most famous are TX8, TPR8 and PACK-ITO. The most recent
developed robot is Justina (Figure 10a) which is been under re-design since 2012, having won some
important competitions over these years.
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Figure 22: The Kalman filter and deep neural networks used to estimate the robot’s position and
orientation.

Figure 23: The House Of inteRactions (THOR) [10] [11]

We also have been working with a Toyota Human Support Robot that we call "Takeshi" and
it has been at our lab since february 2017. All our robots have been participating on different
competitions and events having better results every year as summarized on table 1.

6. Conclusion

ViRBot implements an architecture that allows the development of artificial intelligence sys-
tems in a flexible and modular way, facilitating the programming of new applications focused on
the operation of mobile robots in service environments for human beings. This architecture al-
lows the creation of high-level instructions that are independent of modifications in the operation
of modules in lower layers, this allows a flexible and asynchronous development in student work
teams. Currently, the integration of interoperability with ROS facilitates the increase of function-
ality in robots, making this architecture a contribution for the community interested in developing
their proposed robotic agents.
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Figure 24: Learn how to place objects.

(a) The generator creates synthetic images of the environment. (b) Training Path.

Figure 25: Image Synthesis with Generative Adversarial Nets (GAN)
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Year Event Venue Award

2007 RoboCup 2007 Atlanta, USA 3rd Place

2015 RoCKIn 2015 Lisbon, Portugal
2nd place Object Perception
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2017 RoboCup 2017 Nagoya, Japan
4th place @Home League
Best in speech recognition and Natural Language
Understanding

2018

RoboCup 2018 Montreal, Canada
2nd place @Home DSLP
2nd place @Home OPL

IROS 2018 Madrid, Spain

1st place @TBM1: Getting to Know My Home
1st place TBM2: Welcoming Visitors
1st place TBM3: Catering for Granny Annie’s
Comfort
1st place TBM4: Visit My Home

World Robot
Summit 2018

Tokyo, Japan
4th Place Virtual Space Category
6th place Parthner Robot Challenge

2019 RoboCup 2019 Sydney, Australia 2nd place @Home OPL
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