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1. Introduction

A highlight in observational cosmology is the origin and nature of the cosmic accelerated
expansion. The standard cosmological model that is consistent with current cosmological obser-
vations is the so-called concordance model or ΛCDM. According to this scenario, the observed
accelerating expansion is related to the repulsive gravitational force of a Cosmological Constant
Λ with constant energy density ρ and negative pressure p. This proposal has been the backbone
of the standard cosmology since the nineties, but simple enough as it is the proposal has a cou-
ple of theoretical problems, two of them are the fine tuning argument and coincidence problem
[1, 2]. In order to solve or at least relax these problems, some proposals have lead to alternative
scenarios that can modify the General Relativity (GR) or consider a landscape with a dynamical
dark energy. Is in this way that dark energy emerge as a cosmological solution since it can be
described as a fluid parametrised by an equation of state (EoS), which can be written in terms of
the redshift, w(z). So far, the properties of this EoS remains under-researched. Just to mention a
few, there are a zoo of proposals on dark energy parameterisations discussed in the literature (see,
e.g., [3, 77, 9, 50, 5, 6, 7]), addresing from parameterisation as Taylor-like series to dynamical w(z)
that can provide oscillatory behaviours.

Nowdays, the techniques to discriminate between models and confront them with ΛCDM,
are based in the calculations of the constraints on the EoS free parameter(s) of the models. This
methodology has been done using observables that can show the cosmic acceleration such as:
supernovae type IA (SNeIa), baryon acoustic oscillations (BAO), cosmic microwave background
(CMB), weak lensing spectrum, etcetera. The relevance of using these observations is due to
the precision with which dark energy can be probed. Currently, some measurements such as the
Pantheon from supernovae [83], BOSS [12], just to cite a few, point out a way to constrain these
EoS parameters. These observations allow deviations from the ΛCDM model, which are usually
parametrised by the free EoS parameters. In past years there have been many observations related
to the verification of the cosmic acceleration, e.g from Union2.1 1 to the Joint LightCurve Analysis
[10, 84]. But the statistics has been improved due the density of data this kind of supernovae.

2. How to model dark energy

One of the first steps to understand the behaviour of the cosmic acceleration remains in that we
require an energy density with negative pressure at late times. To achived this we need to express
the ratio between the pressure and energy density as negative, i.e., w(z) = P/ρ < 0. In order to
develop the evolution equations for a universe with this kind of fluid, we start by introducing in
Einstein equations a Friedmann-Lemaitre-Robertson-Walker metric to obtain the Friedmann and
Raychaudhuri equations for a spatially flat universe

E(z)2 =

(
H(z)
H0

)2

=
8πG

3
(ρm +ρDE)

[
Ω0m(1+ z)3 +Ω0(DE) f (z)

]
, (2.1)

and
ä
a
=−H2

2
[Ωm +ΩDE(1+3w)] , (2.2)

1http://supernova.lbl.gov/Union/
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where H(z) is the Hubble parameter in terms of the redshift z, G the gravitational constant and the
subindex 0 indicates the present-day values for the Hubble parameter and matter densities.

From (2.2) it is possible to obtain the energy conservation equation, in that way the energy
density of the non-relativistic matter is ρm(z) = ρ0m(1+ z)3. And the ρm is given by:

ρm(z) = ρ0m(1+ z)3, (2.3)

and the dark energy density can be model as ρDE(z) = ρ0(DE) f (z), where can be written as:

ρDE(z) = ρ0(DE) f (z). (2.4)

If we assuming that the energy-momentum tensor (on the right side of the Einstein’s equations)
T µν is a perfect fluid (without viscosity or stress effects), i.e. ∇µT µν = 0, the form of f (z) can be
restricted to be:

f (z) = e
[
3
∫ z

0
1+w(z̃)

1+z̃ dz̃
]
. (2.5)

Now, the behaviour of the latter is restricted directly to the form of w(z), which can give a
description of the Hubble function (which can be normalised by the constant Hubble H0), as e.g.,
in the case of quiessence models (w = const.) the solution of f (z) is f (z) = (1+ z)3(1+w). If we
consider the case of the cosmological constant (w =−1) then f = 1.

Some interesting insights of the above forms for w(z) has been reported in [77, 78] and refer-
ences therein, where a dark energy density ρDE with varying and non-varying w(z) are considered.

3. Estimating the cosmological parameters

After we have defined a specific cosmological model, we can then perform their test using
astrophysical observations. The methodology can be described by a simple calculation of the usual
χ2 method and then process the MCMC chains computational runs around a certain value (obser-
vational(s) point(s)), and obtain the best fit parameter(s) of this process. Parameter estimation is
usually done by computing the so-called likelihood function for several values of the cosmological
parameters. For each data points in the parameter space, the likelihood L function gives the min-
imise probability of obtaining the observational data that was obtained if the hypothesis parameters
had the given values (or priors). For example, the standard cosmological model ΛCDM is described
by six parameters, which include the amount of dark matter and dark energy in the universe as well
as its expansion rate H. Using the CMB data (which is the accuracy data that we understand very
well so far), a likelihood function can be constructed. The information given by L can tell which
values of these parameters are more likely, i.e by probing many different values. Therefore, we are
able to determine the values of the parameters and their uncertainties via error propagation over the
free parameters of the model.

Now, the following question is what kind of astrophysical surveys2 can we use to test the
cosmological models. In the next sections we described the most used surveys that are employed
to analise the cosmic acceleration. Is important to mention that these surveys spread depending its

2This word in the coloquial language also can be replaced by likelihood –do not misunderstood with the function
L . Or simple we can called as samplers.
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own nature. We have three types of observations classified as: standard candels (e.g supernovae
–properly calibrated–, which characteristic function is the luminosity distance), standard rulers
(e.g BAO, which characteristic function is the angular/volumen distance) and the standard sirens
(e.g gravitational waves, which can be described by frequencies or chirp masses depending the
observation). The set of all of them can describe a precise statistics, but by separate, each of
them have intrinsic problems due their physical definition. For supernovae, the luminosity distance
have in their definition an integral of the cosmological model, therefore when we perform the
error propagation, the uncertainty is high. This disadvantage can be compensated by the large
population of data points in the sampler. On the other hand, the uncertainty is less for standard
rulers in comparison to supernovae. For this case, the definition of angular distance does not
include integrals. The price that we pay in order to use this kind of sampler is that the population
of data is very small (e.g from surveys like BOSS or CMASS, we have only 7 data points). Moving
forward, the observation of gravitational wave standard sirens would be developed into a powerful
new cosmological test due that they can play an important role in breaking parameter degeneracies
formed by other observations as the ones mentioned. Therefore, gravitational wave standard sirens
are of great importance for the future accurate measurement of cosmological parameters. In this
part of the chapter, we are going only to develop the use of the first two kind of observations.

4. Supernovae sampler

Along the ninety years, since their discovery, Type Ia supernovae (SNIa) have been the proof
of the current cosmic acceleration. The surveys have been changing given us a large population
of observations, from Union 2.13 to the Joint LightCurve Analysis [10, 84], the data sets have
been incrementing observations and also their redshift range. Currently, the Pantheon sampler,
which consist of a total 1048 Type Ia supernovae (SNIa) in 40 bins [83] compressed, is the largest
spectroscopically confirmed SNIa sample to date. This latter characteristic makes this sample
attractive to constrain with considerably precision the free cosmological parameters of a specific
model.

SNIa can give determinations of the distance modulus µ , whose theoretical prediction is re-
lated to the luminosity distance dL according to:

µ(z) = 5log
[

dL(z)
1Mpc

]
+25, (4.1)

where the luminosity distance is given in units of Mpc. In the standard statistical analysis, one
adds to the distance modulus the nuisance parameter µ0, an unknown offset sum of the supernovae
absolute magnitude (and other possible systematics), which is degenerate with H0.

Now, the statistical analysis of the this sample rests on the definition of the modulus distance
as:

µ(z j,µ0) = 5log10[dL(z j,Ωm;θ)]+µ0, (4.2)

where dL(z j,Ωm;θ) is the Hubble free luminosity distance:

dL(z,Ωm;θ) = (1+ z)
∫ z

0
dz′

1
E(z′,Ωm;θ)

. (4.3)

3http://supernova.lbl.gov/Union/
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With this notation we expose the different roles of the several cosmological parameters appearing
in the equations: the matter density parameter Ωm appears separated as it is assumed to be fixed
to a prior value, while θ is the EoS parameters wi. These later are the parameters that we will be
constraining by the data. The best fits will be obtained by minimising the quantity

χ
2
SN(µ0,θ) =

N

∑
j=1

(µ(z j,Ωm; µ0,θ)}−µobs(z j))
2

σ2
µ, j

, (4.4)

where the σ2
µ, j are the measurement variances. And nuisance parameter µ0 encodes the Hubble

parameter and the absolute magnitude M, and has to be marginalised over.
From now on, we will assume spatial flatness, therefore the luminosity distance is related to

the comoving distance D via the equation

dL(z) =
c

H0
(1+ z)D(z), (4.5)

where c is the speed of light, so that, using (4.1) we can obtain

D(z) =
H0

c
(1+ z)−110

µ(z)
5 −5. (4.6)

The normalised Hubble function E(z) can be obtained by taking the inverse of the derivative of
D(z) with respect to the redshift D(z) =

∫ z
0 H0dz̃/H(z̃). A usual alternative, instead of using the

full set of parameters for this sampler, is to use the Pantheon plugin for CosmoMC to constrains
cosmological models (something similar as in the case of Joint Light Curve Analysis sampler [84]).

Since we are taking nuisance parameter M in the sample, we choose the respective values of
µ0 from a statistical analysis of the ΛCDM model with Pantheon sample obtained by fixing H0 to
the Planck value given in [53]. Is common to perform this kind of fit using computational tools
that can run a standard MCMC chains. In cosmology –at least at the moment this paper is writing–
several codes have been implemented in order to perform the statistical fit of this parameter. The
lector can explore the tool called MontePython code 4 and run a standard MCMC for M using the
model of their preference. As an example, if we run a ΛCDM model with this supernovae sample,
the mean value obtained will be µ0 =−19.63.

5. Baryon Acoustic Oscillation sampler

As a standard rulers, these astrophysical observations can contribute important features by
comparing the data of the sound horizon today to the sound horizon at the time of recombination
(extracted from the CMB anisotropy data). Usually, the baryon acoustic distances are given as a
combination of the angular scale and the redshift separation.

To define these quantities we require a relationship via the ratio:

dz ≡
rs(zd)

DV (z)
, rs(zd) =

c
H0

∫
∞

zd

cs(z)
E(z)

dz (5.1)

4https://monte-python.readthedocs.io/en/latest/
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where rs(zd) is the comoving sound horizon at the baryon dragging epoch,

rs(zd) =
c

H0

∫
∞

zd

cs(z)
E(z)

dz , (5.2)

and zd is the drag epoch redshift with c2
s = c2/3[1+(3Ωb0/4Ωγ0)(1+ z)−1] as the sound speed

with Ωb0 and Ωγ0, which are the present values of baryon and photon parameters, respectively.
We define the dilation scale as

DV (z,Ωm;w0,w1) =

[
(1+ z)2D2

A
cz

H(z,Ωm;w0,w1)

]1/3

, (5.3)

where DA is the angular diameter distance given by

DA(z,Ωm;w0,w1) =
1

1+ z

∫ z

0

cdz̃
H(z̃,Ωm;w0,w1)

. (5.4)

Using the comoving sound horizon, we can relate the distance ratio dz with the expansion
parameter h (defined such that H .

= 100h) and the physical densities Ωm and Ωb. Therefore, we
have

rs(zd) = 153.5
(

Ωbh2

0.02273

)−0.134(
Ωmh2

0.1326

)−0.255

Mpc, (5.5)

with Ωm = 0.295±0.304 and Ωb = 0.045±0.00054 [84]. As we mentioned above, unfortunately
so far we have a very low data population of this sampler. Moreover, as an example for this text,
we employed compilations of three current surveys: dz(z = 0.106) = 0.336±0.015 from 6-degree
Field Galaxy Survey (6dFGS) [25], dz(z = 0.35) = 0.1126±0.0022 from Sloan Digital Sky Survey
(SDSS) [26] and dz(z = 0.57) = 0.0726± 0.0007 from Baryon Oscillation Spectroscopic Survey
(BOSS) with high-redshift CMASS [27].

We can also, add to the full sample three correlated measurements of dz(z = 0.44) = 0.073,
dz(z = 0.6) = 0.0726 and dz(z = 0.73) = 0.0592 from the WiggleZ survey [28], which has the
inverse covariance matrix:

C−1
WiggleZ =

 1040.3 −807.5 336.8
−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

 (5.6)

In order to perform the χ2-statistic, we define the proper χ2 function for the BAO data as

χ
2
BAO(θ) = XT

BAOC−1
BAOXBAO (5.7)

where XBAO is given as
XBAO =

(
rs(zd)

DV (z,Ωm;w0,w1)
)−dz(z)

)
(5.8)

Then, the total χ2
BAO is directly obtained by the sum of the individual quantity by using (5.7)

in
χ

2
BAO−total = χ

2
6dFGS +χ

2
SDSS +χ

2
BOSSCMASS +χ

2
WiggleZ. (5.9)
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6. About deep learning in cosmology

Although, Bayesian evidence remains the preferred method compared with information crite-
rions and gaussian processes on the literature, a complete Bayesian inference for model selection
–this to have an scenario where we can discriminate a pivot model from a hypothesis– is very
computationally expensive and often suffers from multi-modal posteriors and parameter degenera-
cies. As we pointed out in the later section, the calculation of the evidence leads to a large time
consumption to obtain the final result.

As the study of the Large Scale Structure (LSS) of the universe indicates, all our knowledge
relies on state-of-the art cosmological simulations to address a number of questions by constraining
the cosmological parameters at hand using Bayesian techniques. Moreover, due to the computa-
tional complexity of these simulations, some studies look remain computationally infeasible for the
forseeable future. Is at this point where computational techniques as machine learning can have a
number of important uses, even for trying to understand our universe.

The idea behind the machine learning is based in consider a neural network with a complex
combination of neurons organised in nested layers. Each of these neuron implements a function
that is parametrised by a set of weights W . And every layer of a neural network thus transforms
one input vector –or tensor depending the dimension– to another through a differentiable func-
tion. Theoretically, given a neuron n it will receive an input vector and the choice of an activation
function An, the output of the neuron can be computed as

h<t> = An(Wh ·h<t−1> ·+Wx · x<t>+ba), (6.1)

y<t> = An(Wy ·h<t>+by), (6.2)

where h<t> is called the hidden state, An is the activation function and yt is the output.
The goal in to introduce a set of data in order to train this array and therefore the architecture

can learn to finally give an output set of data. For example: the network can learn the distribution
of the distance moduli in the dark energy models, then feed the astrophysical samplers (surveys) to
the network to reconstruct the dark energy model and then discriminate the most probable model.
5

Moreover, while neural networks can learn complex nested representations of the data, allow-
ing them to achieve impressive performance results, it also limits our understanding of the model
learned by the network itself. The choice of an architecture [85] can have an important influence
on the performance of the neural network. Some design have to made concerning the number and
the type of layers, as well as the number and the size of the filters used in each layer. A convenient
way to select these choices is typically through experimentation –which for our universe, we will
need these to happen first.– As it is, we can select the size of the network, which depends on the
number of training test as networks with a large number of cosmological parameters are likely to
overfit if not enough training test are available.

At the moment these lines are writing, a strong interest over this kind of algorithm is bringing
new opportunities for data-driven cosmological discovery, but will also present new challenges for

5In this paper we are employing a Recurrent Neural Network. There are several in this machine learning field e.g.
in [85] and references therein.
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adopting machine learning –or, in our case, a subset of this field, deep learning– methodologies
and understanding the results when the data are too complex for traditional model development
and fitting with statistics. A few proposals in this area has been done to explote the deep learning
methods for measurements of cosmological parameters from density fields [86] and for future
large-scale photometric surveys [71].

7. Deep learning for dark energy

A first target in order to start to train an astrophysical survey is to design an architecture with an
objective function of neural networks that can have many unstable points and a local minima. This
architecture makes the optimisation process very difficult, but in real scenarios, high levels of noise
degrade the training data and typically results in optimisation scenarios with more local minima
and therefore increases the difficulty in training the neural network. It can thus be desirable to start
optimising the neural network using noise-free data which typically yield smoother scenarios. As
an example, in Figure 1 we present a standard network using an image of a cosmological simulation
(the data) and then divided an array of several layers to finally extract the output cosmological
parameters value. Each neuron use a Bayesian process to compute the error propagation as it is
done in the standard inference analyses.

We can describe a quickly, but effective, recipe to develop a Recurrent Neural Network with a
Bayesian computation training in the following steps:

• Step 1. Construction of the the neural network. For a Recurrent Neural Network method we
can choose values that have one layer and a certain number of neurons (e.g you can start with
100 for a supernovae sampler).

• Step 2. Organising the data. We need to sort the sampler from lower to higher redshift in the
observations. Afterwards, we re-arrange our data using the number of steps (e.g try with 4
steps numbered as xi for a supernovae sampler).

• Step 3. Computing the Bayesian training. Due to the easiness of neural networks to overfit, it
is important to choose a mode of regularisation. With a Bayesian standard method to compute
the evidence, the algorithm can calculate errors via regularisation methods[89]. Finally, over
the cost function we can use Adam optimiser.

Figure 1: A deep learning architecture for cosmology,

7
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• Step 4. Training the entire architecture. It is suitable to consider a high number of epochs
(e.g for a sampler as Pantheon, you can try with 1000 epoch per layer). After the training, it
is necessarily to read the model and apply more times the same dropout to the initial model.
The result of this step is the construction of the confidence regions.

• Step 5. Computing modulus distance µ(z) for each cosmological model. Using the defini-
tions of E(z), we can compute µ(z) by using a specific dark energy equation of state in terms
of z and then integrating them.

• Step 6. Computing the best fits. Finally, the output values can be obtained by using the
training data as a simulated sample. We use the publicly codes CLASS 6 and Monte Python
7 to constrain the models as it is standard for usual Bayesian cosmology.

The results of this recipe can be seeing in Figure 2.

8. Conclusions

In this paper we discuss how to derive the equations of state for a specific dark energy model.
Also we studied the standard models of dark energy in order to project the cosmic acceleration
according to the current data available in the literature. Is important to remark that each Bayesian
statistics performed will depend solely on the data used to developed them. More the data, better
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Figure 2: Statistical contours levels for ΛCDM using observational data (red color) and training deep learn-
ing data (blue color)

6https://github.com/lesgourg/class_public
7https://github.com/baudren/montepython_public
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the statistics. So we expect that future surveys will improve the constrains over the cosmological
parameters, not only at background level, but also at perturbative level.

The exploration of these astrophysical surveys have reached a new scenario in regards to the
machine learning techniques. These kind of techniques allow to explore –without technical prob-
lems in the astrophysical devices– scenarios where the pivot model of cosmology, ΛCDM, a the-
oretical framework that accurately describes a large variety of cosmological observables, from the
temperature anisotropies of the cosmic microwave background to the spatial distribution of galax-
ies. This model has a few free parameters representing fundament quantities, like the geometry
and expansion rate of the Universe, the amount and nature of dark energy, and the sum of neutrino
masses. Knowing the value of these parameters will improve our knowledge on the fundamental
constituents and laws governing our universe. Thus, one of most important goals of modern cos-
mology is to constrain the value of these parameters with the highest accuracy. Therefore, as an
extrapolation between the ideas of the standard cosmostatistics and the use of machine learning
techniques will improve even better the constrain of the cosmological parameters without to be
worried about the intrinsic uncertainties of the data [100].
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