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The race is on as more computing power is required to solve some of the most complex, data-

intensive problems in existence today. How will quantum computing overcome its inherent 

challenges - cost, footprint, power consumption, temperature requirements, instability - to 

leapfrog super computers as the platform for the future? See how quantum simulators are helping 

to overcome those challenges and enabling researchers and end users alike the ability to develop 

quantum algorithms that will solve problems faster, leading to new pharmaceuticals and medical 

treatments, improved financial modelling and weather forecasting, cheaper energy production and 

much more. 
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 Introduction 

As a Senior Hardware & HPC Expert at ATOS, I have several years of experience in software 

and hardware engineering and a desire to share my passion and knowledge of high-performance 

computing (HPC) with others. As lead for HPC research at the Missouri University of Science 

and Technology, I supported multidisciplinary research through computational simulation on HPC 

systems. At Atos, I design custom hardware and software solutions for computational sciences, 

data sciences, and scientific simulation and modeling. I frequently partner with research scientists 

in various fields, assisting them with software design for simulations and demonstrations. 

As a result of these research-oriented activities I have come in contact with many of the top 

engineers in the fields of machine learning, artificial intelligence and quantum computing. Out of 

these relationships came the knowledge of how-to-future-proof our algorithms for the next 

generation of computation. In this paper I plan to discuss the basics of machine learning and 

artificial intelligence and show the advancements of hardware and algorithms over the past decade 

and into the future of Quantum Computing. 

Human Learning 

Before we can really talk about machine learning, we need to know a little about human 

learning see Figure 1. How does our brain work? How do we learn if we are safe or in danger? 

How do we learn what we can and cannot eat? How 

do we keep the information we learned for the 

future? The information is stored within chemical 

and electrical bonds between neurons in the brain. 

These neurons build pathways which control 

behavior and reactions. The more times a neuron 

fires, the stronger the link becomes, eventually 

making it the default flow of information through 

the brain. 

The human brain consists of 100 billion 

neurons, 100 trillion synapses, and is massively 

parallel see Figure 2. The synapses for the connections for information flow to, through and from 

the brain. In essence, the synapses/neuron interaction is what controls our ability to learn. Modern 

Machine Learning (ML) Systems emulate learning at the neural level and are the basis for most 

modern machine learning algorithms. 

Let’s take a fictitious example from a cave 

man: learning to avoid the dangerous sabre-

toothed tiger. To simplify the explanation, we will 

assume that the fight or flight response is 

controlled by a single neuron. This neuron can 

have several synapses based on sight, sound, smell, 

touch, or perception. On the first encounter with a 

sabre-toothed tiger the sight synapse sends a signal 

to the neuron saying, “That’s a sabre-toothed 

Figure 1: Human Leraning 

Figure 2: A nueron and the synapses connecting 

it to the nervous system. 
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tiger.” The neuron says, “Run!” and remembers to listen more closely to this synapse next time. 

A few minutes later another synapse says, “Run! It’s a fluffy bunny!” The neuron ignores this 

signal and remembers to listen to this synapse less in the future. The learning process continues 

as the neuron learns which signals are more or less important in the flight or fight decision. 

Machine Learning 

Modern machine learning techniques use the above model of the human brain as a starting 

point for “teaching” a computer to learn, like a human. We start with a neural network consisting 

of a series of neurons connected by synapses. The machine learning process is accomplished 

through modifying the weights of the 

synapses between the neurons. This 

network is trained by being provided 

with a data set of known outcomes.  

These input/output pairs are fed into the 

network and the weights are adjusted 

until for every known input state, the 

network provides the expected output 

state. Once the network is trained, it can 

then be utilized to categorize data that it has never seen before, in effect learning the expected 

output for the unknown input based on the history taken from the training process. 

To understand a little more about machine learning, we are going to look at Figure 3 and 

recall the story of the caveman learning when to run or take a nap when faced with a creature. 

Imagine for a moment that what was learned was not correct. In the case when a caveman sees at 

the same time a badger, a fluffy bunny, and a sabre-thoothed tiger shown in Figure 3, the neuron 

with weights of  (w1=1, w2=1, w3=5) would receive a 9.1 (it’s a sabre-toothed tiger), a 4.3 (it’s a 

badger) and a -3.7 (it’s a bunny). This would result in a total of -5.1, so the model would take a 

nap and be eaten. It becomes obvious that this model is not correct for keeping the model safe. So 

adjustments need to happen; let’s try a different weight (w1=5, w2=1 and w3=-5) and now we get 

68.3, which tells the model to run, so this is good. However, the model must be tested with several 

different input cases before we can confirm correctness.   

How the computer does this is to translate the weights into binary (W1 = 5 = 000101, W2 = 

1 = 000001, and W3 = -5 = 100101); it then tests the training set with these weights and provides 

a scoring based on the match percentage. It then modifies a single bit in the weight string and tries 

the training set again. Each changed bit either improves or hurts the model’s performance. This is 

a very long process; even in our simple example it requires testing the entire training set over 68 

billion times to arrive at the optimal weights for training. Complex models contain more than one 

neuron and require very significant training times, changing single bits and computing a score 

repeatedly. 

Speeding up the Process 

Over the many years of machine learning software development, new technologies have 

come online to improve the training time of the algorithms. Once a model is trained, executing 

Figure 3: Diagram depicting the fight or flight nueron 

discussed in Human Learning as a computer model. 
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the model is a simple and low-cost 

operation when it comes to computing 

power, but training can take months on 

complex deep learning models like the one 

pictured in Figure 4.  The model here is 

one example that can take months of 

computer cycles to train, and every time 

new data is introduced to the system, 

benefits can be gained by retraining the 

model. 

The model we have described so far 

is very dependent on the number of 

simultaneous tests you can perform. Up 

until around 2001 you were limited to a single test per processor, resulting in needing multiple 

systems to process even relatively small machine learning tasks. In 2001 multi-core processor 

technology came in to play in the machine learning community. It resulted in being able to look 

at multiple weights simultaneously but was only a small step forward. In 2005 timeframe graphic 

processing units (GPUs) began to be used to train neural networks; this took the number of threads 

from around 12 to over 3000. This meant that 3000 weight vectors could be tested simultaneously 

resulting in a much faster training process. 

The latest technology to coming to the market is quantum computing technology. It’s not 

quite mainstream yet, but in effect, quantum processing units (QPUs) can process all possible 

weights simultaneously, at least as long as the number of bits in the weight vector is smaller than 

the number of qbits in the QPU, brining nearly infinite speedup to the training process on neural 

networks. 

The concepts of modern machine learning techniques were described before the 

microprocessor-based computer. It was described in 1949 by Donald Hebb and was based on the 

neural learning mechanism within the human brain. Hebb wrote, “When one cell repeatedly 

assists in firing another, the axon of the first cell develops synaptic knobs (or enlarges them if 

they already exist) in contact with the soma of the second cell.”2 Translating Hebb’s concept to 

machines, we narrow it down to a weighting mechanism between artificial neurons and their 

relationship with each other. 

In neural networks today we base the learning outcome on a scoring mechanism where the 

score determines the decision. For example, in a self-driving car, a high score means, “hit the 

brakes; there is a child in the road,” and zero children die, and a low score means, “keep moving; 

everything is fine”, and a child dies. We base this scoring on a series of artificial neurons that add 

together all the various inputs of the system to arrive at a score.   

The neural network is trained by adjusting the weights of the links between the neurons 

through feeding in a known set of training data and adjusting the weights until the expected score 

for the training set is output correctly for every item in the training set. The training requires 

adjusting every neural link many times and processing the entire training set after each change; 

as a result the training can take weeks. This is where quantum computing comes in to play. 

 
2 Hebb, D.O. (1949). The Organization of Behavior. New York: Wiley & Sons. 

Figure 4: Dipiction of a deep learning network with 

many neurons and synapses where each can have a 

differen wieght and all the neuron interact with one 

another to different degrees. 
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Quantum Computing Overview 

Quantum computers work off of a quantum mechanical bit called a qubit. What makes a 

qubit so special is that it can be in two different states simultaneously known as superposition. 

We can think of this like a coin tossed in the air spinning. While it is in the air it has equal 

probability of landing on heads or tails (0 or 1) and can be considered as being in superposition. 

Just like the coin cannot flip through the air continuously, a qubit cannot remain in superposition 

forever either. This is one of the first issues with producing stable quantum processors, the 

problem of decoherence, which can be solved to some degree by lowering the temperature of the 

qubit to near absolute zero, which greatly increases the amount of time it can remain in this 

superposition state. 

The second strange property of a qubit is that it can become entangled with another qubit, 

meaning that the two entangled qubits will always react in the same way, if you read one qubit 

the other will instantly become the opposite value, or the same value depending on the initial 

entangled state, they stay related in the same way. I like to think of entanglement of ballroom 

dancing partners, one partner will always be facing you and the other will be facing away from 

you. When entanglement is perfect, they will follow one another exactly with no delay. Just like 

ballroom dancers cannot stay in perfect sync, neither can quantum systems, which results in a 

phase shift between the two qubits. With enough of a phase shift, the results of the process are not 

accurate.  

There is no theoretical limitation for perfect entanglement, and eternal superposition, but the 

environmental noise cannot be suppressed completely resulting in limitations to the observation 

of perfect entanglement and eternal superposition. 

Quantum Machine Learning 

Quantum Computing, which is also not so new, was first conceptualized in the early 1980s 

by Paul Benioff34, and very shortly afterward, Richard Feynman5 and Yuri Manin6 suggested that 

a quantum mechanical computer like Benioff proposed could perform calculations that are out of 

reach for classical computers. This comes about because of their ability to examine the results of 

multiple input scenarios simultaneously. 

Quantum computers can be used to determine the weighting of the links between the 

artificial neurons in a fraction of the time because of their ability to test all weights simultaneously, 

or all input simultaneously, depending on the exact learning method employed. The first method 

is to use the quantum bits (qubits) to represent the neuron weights, allowing you to test all the 

input data in sequence and pick the best weights for the training data. The second method is to 

represent the data with the qubits and test all the possible weights in sequence. The fastest method 

 
3 "Quantum Mechanical Models of Turing Machines That Dissipate No Energy", Paul Benioff, Physical Review 

Letters, 48, 1581 (1982). 
4 " Quantum mechanical hamiltonian models of turing machines", Paul Benioff, Journal of Statistical Physics, 

Vol. 29, 515-546, 1982 
5 Feynman, Richard (1982). "Simulating Physics with Computers". International Journal of Theoretical Physics. 

21 (6–7): 467–488. Bibcode:1982IJTP...21..467F. CiteSeerX 10.1.1.45.9310. doi:10.1007/BF02650179. 
6 Manin: Quantum groups and non commutative geometry, Montreal, Centre de Recherches Mathématiques, 

1988 
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depends on the size of the neural network and training data. If your quantum system is large 

enough, you want to represent the larger of the two using qubits. 

To make it a little easier to understand, let us think about a very simple test case with four 

neurons and a training data set with 32 values. This would require you to check weights of four 

links, requiring 16 total tests, for each of the 32 input values, for a total of 512 tests using classic 

machine learning. Because the qubits can set all possible values at once if we represent the four 

weights with four qubits, we run all weights at once and only perform 32 tests. If we represent the 

training data with the qubits, we can run all inputs at once and only need to run 16 tests. If we 

bring these values into current training model sizes, you begin to see the power. Modern quantum 

computers are limited to 52 qubits which allows for two to the 52nd power weights that can be 

tested simultaneously, which will reduce the total number of steps for training a 52 neuron 

network by roughly the number of atoms in the universe if we assume 1-qubit weights. Actual 

machine learning algorithms would likely use 8-qubit weights reducing the size of the neural 

network to seven neurons, but the overall speed of computation would still be multiple orders of 

magnitude. 

 


