ISGC2021 - (other isgc conferences)
22-26 March 2021
Academia Sinica Computing Centre (ASGC), Taipei, Taiwan Website: https://indico4.twgrid.org/indico/event/14/overview
published October 22, 2021
Entries on ADS

Theme of ISGC 2021 is "Challenges in High Performance Data Analytics: Combining Approaches in HPC, HTC, Big Data and AI".

While the research data are becoming a real asset nowadays, it is an information and knowledge gained through thorough analysis that makes them so valuable. To process vast amounts of data collected, novel high performance data analytics methods and tools are needed, combining classical simulation oriented approaches, big data processing and advanced AI methods. Such a combination is not straightforward and needs novel insights at all levels of the computing environment – from the network and hardware fabrics through the operating systems and middleware to the platforms and software, not forgetting the security – to support data oriented research. Challenging use cases that apply difficult scientific problems are necessary to properly drive the evolution and also to validate such high performance data analytics environments.

Even we have to meet virtually, the goal of ISGC 2021 is still to offer a platform where individual communities and national representatives can present and share their contributions to the global puzzle and contribute thus to the solution of global challenge. 

 

EDITORIAL BOARD

Editorial Board

  • Ludek Matyska
    CESNET, CZ
conference main image
Sessions
Biomedicine & Life Sciences Applications
Converging High Performance infrastructures: Supercomputers, clouds, accelerators
Data Management & Big Data
Earth/Environmental Sciences Applications
Humanities, Arts & Social Sciences Applications
Infrastructure Clouds and Virtualisation
Network, Security, Infrastructure & Operations
Physics & Engineering Applications
Converging High Performance infrastructures: Supercomputers, clouds, accelerators
A possible solution for HEP processing on network secluded Computing Nodes
M. Mariotti, D. Spiga and T. Boccali
Enabling HPC systems for HEP: the INFN-CINECA Experience
T. Boccali, D. Ciangottini, F. Noferini, C. Bozzi, S. Perazzini, A. Valassi, F. Stagni, A. Doria, L. dell'Agnello, G. Maron, A. De Salvo, S. Zani, L. Morganti, D. Cesini, V. Sapunenko, D. Spiga and S. Dal Pra
HPC-Cloud-Big Data Convergent Architectures and Research Data Management: The LEXIS Approach
S. Hachinger, J. Martinovič, O. Terzo, M. Levrier, A. Scionti, D. Magarielli, T. Goubier, A. Parodi, P. Harsh, F.I. Apopei, J. Munke, R. García-Hernández, M. Golasowski, M. Hayek, F. Donnat, L. Ganne, C. Koch-Hofer, G. Vitali, P. Viviani, D. Schorlemmer, E. Danovaro, A. Parodi, S. Murphy and A. Dees
Deep Learning fast inference on FPGA for CMS Muon Level-1 Trigger studies
T. Diotalevi, M. Lorusso, R. Travaglini, C. Battilana and D. Bonacorsi
Architecture of Job Scheduling Simulator for Demand Response Based Resource Provisioning
S. Matsui, Y. Watashiba, S. Date, J. Liu, S. Shimojo and K. Harumoto
Scalable computing in Java with PCJ Library. Improved collective operations
M. Nowicki, Ł. Górski and P. Bała
Data Management & Big Data
A Big Data Platform for heterogeneous data collection and analysis in large-scale data centres
S. Rossi Tisbeni, D. Cesini, B. Martelli, A. Carbone, C. Cavallaro, D.C. Duma, A. Falabella, M. Galletti, J. Gasparetto, E. Furlan, D. Michelotto, F. Minarini, L. Morganti, E. Ronchieri and G. Sergi
Reinforcement Learning for Smart Caching at the CMS experiment
T. Tedeschi, M. Tracolli, D. Ciangottini, D. Spiga, L. Storchi, M. Baioletti and V. Poggioni
Earth/Environmental Sciences Applications
Air quality predictions of Ulaanbaatar using machine learning approach
O. Badrakh and L. Choimaa
Performance estimation of deep learning methods for change detection on satellite images with a low-power GPU
A. Di pilato, N. Taggio and M. Iacobellis
A new method for geomorphological studies and land cover classification using Machine Learning techniques
G. Miniello and M. La Salandra
Humanities, Arts & Social Sciences Applications
Serious Game Design For Playful Exploratory Urban Simulation
L. Vu hong and R.S.M. Wang
Machine Learning Infrastructure on the Frontier of Virtual Unwrapping
S. Parsons, J. Chappell, C.S. Parker and W.B. Seales
Concept of the Social Design in Public Spaces Practice – cases of Berlin and Taipei
S.t. Wang and R.S.M. Wang
Some study results of color changes depending on Mongolian environmental condition
O. Badrakh, B. Enkhjargal and G. Tuvdendorj
Piloting Data Science Learning Platforms through the Development of Cloud-based interactive Digital Computational Notebooks
R.K. Gnanasekaran and R. Marciano
Exploring the awareness of health and life promotion from the differences in the lifestyles of young people before and during the epidemic
R.S.M. Wang and W. Pan
Infrastructure Clouds and Virtualisation
Machine Learning as a Service for High Energy Physics on heterogeneous computing resources
L. Giommi, V. Kuznetsov, D. Bonacorsi and D. Spiga
Distributed filesystems (GPFS, CephFS and Lustre-ZFS) deployment on Kubernetes/Docker clusters
F. Fornari, A. Cavalli, D. Cesini, A. Falabella, E. Fattibene, L. Morganti, A. Prosperini and V. Sapunenko
Optimization of ICT Common Wealth Planning and Sharing based on Organic Economic Ecology and Theory of Knowledge Value Transformation ~ on case of open collaboration Framework
J.K. Chiang
Network, Security, Infrastructure & Operations
Application of OMAT in HTCONDOR resource management
Q. Hu, W. Zheng, X. Jiang and J. Shi
Feasibility study on MPTCP ACK via alternative path in real network environment
H. Koibuchi, H. Abe and K. Kato
A comprehensive security operation center based on big data analytics and threat intelligence
J. Wang, T. Yan, D. An, Z. Liang, C. Guo, H. Hu, Q. Luo, H. Li, H. Wang, S. Zeng, C. Zhou, L. Ma and F. Qi
Making Identity Assurance and Authentication Strength Work for Federated Infrastructures
J.A. Ziegler, U. Stevanovic, D. Groep, I. Neilson, D.P. Kelsey and M. Kremers
Physics & Engineering Applications
Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned
E. Ronchieri, M. Canaparo and Y. Yang