PoS - Proceedings of Science
Volume 467 - Loops and Legs in Quantum Field Theory (LL2024) - Parallel 3
Analytic Evaluation of Multiple Mellin-Barnes Integrals
S. Banik* and S. Friot
Full text: pdf
Published on: September 17, 2024
Abstract
We summarize two geometrical approaches to analytically evaluate higher-fold Mellin-Barnes (MB) integrals in terms of hypergeometric functions. The first method is based on intersections of conic hulls, while the second one, which is more recent, relies on triangulations of a set of points. We demonstrate that, once automatized, the triangulation approach is computationally more efficient than the conic hull approach. As an application of this triangulation approach, we describe how one can derive simpler hypergeometric solutions of the conformal off-shell massless two-loop double box and one-loop hexagon Feynman integrals than those previously obtained from the conic hull approach. Lastly, by applying the above techniques on the MB representation of multiple polylogarithms, we show how to obtain new convergent series representations for these functions. These new analytic expressions were numerically cross-checked with GINAC.
DOI: https://doi.org/10.22323/1.467.0039
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.