Towards dynamical simulations with the anisotropic HISQ action
Y. Trimis*,
A. Bazavov and
J.H. Weber*: corresponding author
Pre-published on:
February 26, 2025
Published on:
—
Abstract
The primary goal of this project is the reconstruction of quarkonium spectral functions from thermal lattice correlators, relevant for the study of Quark-Gluon Plasma in heavy-ion collisions. To this end, we pursue the generation of fully dynamical anisotropic HISQ ensembles, aiming at a physical strange quark and a heavier-than-physical light quark mass, corresponding to a 300 MeV continuum pion mass. We report on tuning the gauge anisotropy and the lattice spacing of anisotropic pure gauge ensembles with tree-level Symanzik-improved action using the gradient flow and compare various tuning schemes. We also discuss the simultaneous tuning of the strange quark mass and the quark anisotropy with aHISQ, using spectrum measurements on quenched ensembles. We compare different ways to tune the quark anisotropy and discuss pion taste splittings for aHISQ at anisotropies up to 8. Finally, we present the expressions for the aHISQ fermion force required for dynamical simulations.
DOI: https://doi.org/10.22323/1.466.0129
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.