PoS - Proceedings of Science
Volume 444 - 38th International Cosmic Ray Conference (ICRC2023) - Cosmic-Ray Physics (Indirect, CRI)
Deep-Learning-Based Cosmic-Ray Mass Reconstruction Using the Water-Cherenkov and Scintillation Detectors of AugerPrime
 The Pierre Auger Collaboration, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, R. Aloisio, J. Alvarez-Muñiz, J. Ammerman Yebra, G.A. Anastasi, L.A. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, P.R. Araújo Ferreira, E. Arnone, J.C. Arteaga Velazquez, H.G. Asorey, P. Assis, G. Avila, E. Avocone, A.M. Badescu, A. Bakalova, A. Balaceanu, F. Barbato, A. Bartz Mocellin, J.A. Bellido, C. Berat, M.E. Bertaina, G. Bhatta, M. Bianciotto, P.L. Biermann, V. Binet, K. Bismark, T. Bister, J. Biteau, J. Blazek, C. Bleve, J. Blümer, M. Bohacova, D. Boncioli, C. Bonifazi, L. Bonneau Arbeletche, N. Borodai, J. Brack, P.G. Brichetto Orchera, F.L. Briechle, A. Bueno, S. Buitink, M. Buscemi, M. Büsken, A. Bwembya, K.S. Caballero-Mora, S. Cabana-Freire, L. Caccianiga, I. Caracas, R. Caruso, A. Castellina, F. Catalani, G. Cataldi, L. Cazon, M. Cerda, A. Cermenati, J.A. Chinellato, J. Chudoba, L. Chytka, R.W. Clay, A. Cobos Cerutti, R. Colalillo, A. Coleman, M.R. Coluccia, R. Conceição, A. Condorelli, G. Consolati, M. Conte, F. Convenga, D. Correia dos Santos, P.J. Costa, C. Covault, M. Cristinziani, C.S. Cruz Sanchez, S. Dasso, K. Daumiller, B.R. Dawson, R.M. de Almeida, J. de Jesus, S.J. de Jong, J. de Mello Neto, I. De Mitri, J. de Oliveira, D. de Oliveira Franco, F. de Palma, V. de Souza, E. De Vito, A. Del Popolo, O. Deligny, N. Denner, L. Deval, A. di Matteo, M. Dobre, C. Dobrigkeit, J.C. D'Olivo, L.M. Domingues Mendes, J. dos Anjos, R.C. dos Anjos, J. Ebr, F.H. Ellwanger, M. Emam, R. Engel, I. Epicoco, M. Erdmann, A. Etchegoyen, C. Evoli, H. Falcke, J. Farmer, G.R. Farrar, A. Fauth, N. Fazzini, F. Feldbusch, F. Fenu, A. Fernandes, B. Fick, J.M. Figueira, A. Filipcic, T. Fitoussi, B. Flaggs, T. Fodran, T. Fujii, A. Fuster, C. Galea, C. Galelli, B. García, C. Gaudu, H. Gemmeke, F. Gesualdi, A. Gherghel-Lascu, P.L. Ghia, U. Giaccari, M. Giammarchi, J. Glombitza, F. Gobbi, F. Gollan, G. Golup, M. Gómez Berisso, P.F. Gómez Vitale, J.P. Gongora, J.M. Gonzalez, N.M. Gonzalez, I. Goos, D. Gora, A. Gorgi, M. Gottowik, T.D. Grubb, F. Guarino, G. Guedes, E. Guido, S.T. Hahn, P. Hamal, M.R. Hampel, P.M. Hansen, D. Harari, V.M. Harvey, A. Haungs, T. Hebbeker, C. Hojvat, J.R. Hörandel, P. Horvath, M. Hrabovsky, T. Huege, A. Insolia, P.G. Isar, P. Janecek, J.A. Johnsen, J. Jurysek, A. Kääpä, K.H. Kampert, B. Keilhauer, A. Khakurdikar, V.V. Kizakke Covilakam, H. Klages, M. Kleifges, F. Knapp, N. Kunka, B.L. Lago, N. Langner*, M.A. Leigui de Oliveira, Y. Lema-Capeans, V. Lenok, A. Letessier-Selvon, I. Lhenry-Yvon, D. Lo Presti, L. Lopes, L. Lu, Q. Luce, J.P. Lundquist, A. Machado Payeras, M. Majercakova, D. Mandat, B.C. Manning, P. Mantsch, S. Marafico, F.M. Mariani, A. Mariazzi, I.C. Maris, G. Marsella, D. Martello, S. Martinelli, O. Martínez Bravo, M.A. Martins, M. Mastrodicasa, H.J. Mathes, J. Matthews, G. Matthiae, E.W. Mayotte, S. Mayotte, P. Mazur, G. Medina-Tanco, J. Meinert, D. Melo, A. Menshikov, C. Merx, S. Michal, M.I. Micheletti, L. Miramonti, S. Mollerach, F. Montanet, L. Morejon, C. Morello, A.L. Müller, K. Mulrey, R. Mussa, M.S. Muzio, W.M. Namasaka, S. Negi, L. Nellen, K. Nguyen, G. Nicora, M. Niculescu-Oglinzanu, M. Niechciol, D. Nitz, D. Nosek, V. Novotný, L. Nozka, A. Nucita, L.A. Nunez, C. Oliveira, M. Palatka, J. Pallotta, S. Panja, G. Parente, T. Paulsen, J. Pawlowsky, M. Pech, J. Pękala, R. Pelayo, L.A. Pereira, E.E. Pereira Martins, J. Perez Armand, C. Pérez Bertolli, L. Perrone, S. Petrera, C. Petrucci, T. Pierog, M. Pimenta, M. Platino, B. Pont, M. Pothast, M. Pourmohammad Shahvar, P. Privitera, M. Prouza, A. Puyleart, S. Querchfeld, J. Rautenberg, D. Ravignani, M. Reininghaus, J. Ridky, F. Riehn, M. Risse, V. Rizi, W. Rodrigues de Carvalho, E. Rodriguez, J.R. Rodriguez Rojo, M.J. Roncoroni, S. Rossoni, M. Roth, E. Roulet, A. Rovero, P. Ruehl, A. Saftoiu, M. Saharan, F. Salamida, H.I. Salazar, G. Salina, J. Sanabria Gomez, F.A. Sánchez, E.M. Santos, E. Santos, F. Sarazin, R. Sarmento, R. Sato, P. Savina, C.M. Schäfer, V. Scherini, H. Schieler, M. Schimassek, M. Schimp, F. Schlüter, D. Schmidt, O. Scholten, H. Schoorlemmer, P. Schovanek, F. Schröder, J. Schulte, T. Schulz, S.J. Sciutto, M. Scornavacche, A. Segreto, S. Sehgal, S.U. Shivashankara, G. Sigl, G. Silli, O. Sima, F. Simon, R. Smau, R. Smida, P. Sommers, J.F. Soriano, R. Squartini, M. Stadelmaier, D. Stanca, S. Stanič, J. Stasielak, P. Stassi, S. Strähnz, M. Straub, M. Suárez-Durán, T. Suomijarvi, A.D. Supanitsky, Z. Svozilikova, Z. Szadkowski, A. Tapia, C. Taricco, C. Timmermans, O. Tkachenko, P. Tobiska, C.J. Todero Peixoto, B. Tomé, Z. Torrès, A. Travaini, P. Travnicek, C. Trimarelli, M.J. Tueros, M. Unger, L. Vaclavek, M. Vacula, J.F. Valdés Galicia, L. Valore, E. Varela, A. Vásquez-Ramírez, D. Veberic, C. Ventura, I.D. Vergara Quispe, V. Verzi, J. Vícha, J. Vink, J. Vlastimil, S. Vorobiov, C.K.O. Watanabe, A. Watson, A. Weindl, L. Wiencke, H. Wilczyński, D. Wittkowski, B. Wundheiler, B. Yue, A. Yushkov, O. Zapparrata, E. Zas, D. Zavrtanik and M. Zavrtaniket al. (click to show)
Full text: pdf
Pre-published on: July 25, 2023
Published on: September 27, 2024
Abstract
At the highest energies, cosmic rays can be detected only indirectly by the extensive air showers they create upon interaction with the Earth's atmosphere. While high-statistics measurements of the energy and arrival directions of cosmic rays can be performed with large surface detector arrays like the Pierre Auger Observatory, the determination of the cosmic-ray mass on an event-by-event basis is challenging. Meaningful physical observables in this regard include the depth of maximum of air-shower profiles, which is related to the mean free path of the cosmic ray in the atmosphere and the shower development, as well as the number of muons that rises with the number of nucleons in a cosmic-ray particle. In this contribution, we present an approach to determine both of these observables from combined measurements of water-Cherenkov detectors and scintillation detectors, which are part of the AugerPrime upgrade of the Observatory. To characterize the time-dependent signals of the two detectors both separately as well as in correlation to each other, we apply deep learning techniques. Transformer networks employing the attention mechanism are especially well-suited for this task. We present the utilized network concepts and apply them to simulations to determine the precision of the event-by-event mass reconstruction that can be achieved by the combined measurements of the depth of shower maximum and the number of muons.
DOI: https://doi.org/10.22323/1.444.0371
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.