Introduction to noncommutative field and gauge theory
P. Vitale*, M. Adamo, R. Dekhil and D. Fernández-Silvestre
Pre-published on:
March 14, 2024
Published on:
—
Abstract
These are lecture notes for an introductory course on noncommutative field and gauge theory. We begin by reviewing quantum mechanics as the prototypical noncommutative theory, as well as the geometrical language of standard gauge theory. Then, we review a specific approach to noncommutative field and gauge theory, which relies on the introduction of a derivations-based differential calculus. We focus on the cases of constant and linear noncommutativity, e.g., the Moyal spacetime and the so-called $\mathbb{R}^3_\lambda$, respectively. In particular, we review the $g\varphi^4$ scalar field theory and the $U(1)$ gauge theory on such noncommutative spaces. Finally, we discuss noncommutative spacetime symmetries from both the observer and particle point of view. In this context, the twist approach is reviewed and the $\lambda$-Minkowski $g\varphi^4$ model is discussed.
DOI: https://doi.org/10.22323/1.440.0007
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.