A numerical and theoretical study of multilevel performance for two-point correlator calculations
B. Kitching-Morley* and
A. Juttner*: corresponding author
Pre-published on:
May 16, 2022
Published on:
July 08, 2022
Abstract
An investigation of the performance of the multilevel algorithm in the approach to criticality has been undertaken using the Ising model, performing simulations across a range of temperatures. Numerical results show that the performance of multilevel in this system deteriorates as the correlation length is increased with respect to the lattice size. The statistical error of the longest correlator in the system is reduced in a multilevel setup when the correlation length is less than one-tenth of the lattice size, while for longer correlation lengths multilevel performs more poorly than a computer-time equivalent single level algorithm. A theoretical model of this performance scaling is outlined, and shows remarkable accuracy when compared to numerical results. This theoretical model may be applied to other systems with more complex spectra to predict if multilevel techniques are likely to result in improved statistics.
DOI: https://doi.org/10.22323/1.396.0133
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.