Mass composition of Telescope Array's surface detectors events using deep learning
R. Abbasi,
T. Abu-Zayyad,
M. Allen,
Y. Arai,
R. Arimura,
E. Barcikowski,
J. Belz, D. Bergman, S. Blake, R. Cady, B. Cheon, J. Chiba, M. Chikawa, T. Fujii, K. Fujisue, K. Fujita, R. Fujiwara, M. Fukushima, R. Fukushima, G. Furlich, R. Gonzalez, W. Hanlon, M. Hayashi, N. Hayashida, K. Hibino, R. Higuchi, K. Honda, D. Ikeda, T. Inadomi, N. Inoue, T. Ishii, H. Ito, D. Ivanov, H. Iwakura, A. Iwasaki, H. Jeong, S. Jeong, C. Jui, K. Kadota, F. Kakimoto, O. Kalashev, K. Kasahara, S. Kasami, H. Kawai, S. Kawakami, S. Kawana, K. Kawata, I. Kharuk*, E. Kido, H. Kim, J. Kim, J. Kim, M.H. Kim, S.W. Kim, Y. Kimura, S. Kishigami, Y. Kubota, S. Kurisu, V. Kuzmin, M. Kuznetsov, Y. Kwon, K. Lee, B.P. Lubsandorzhiev, J.P. Lundquist, K. Machida, H. Matsumiya, T. Matsuyama, J. Matthews, R. Mayta, M. Minamino, K. Mukai, I. Myers, S. Nagataki, K. Nakai, R. Nakamura, T. Nakamura, T. Nakamura, Y. Nakamura, A. Nakazawa, E. Nishio, T. Nonaka, H. Oda, S. Ogio, M. Ohnishi, H. Ohoka, Y. Oku, T. Okuda, Y. Omura, M. Ono, R. Onogi, A. Oshima, S. Ozawa, I.H. Park, M. Potts, M. Pshirkov, J. Remington, D. Rodriguez, G. Rubtsov, D. Ryu, H. Sagawa, R. Sahara, Y. Saito, N. Sakaki, T. Sako, N. Sakurai, K. Sano, K. Sato, T. Seki, K. Sekino, P. Shah, Y. Shibasaki, F. Shibata, N. Shibata, T. Shibata, H. Shimodaira, B. Shin, H. Shin, D. Shinto, J. Smith, P. Sokolsky, N. Sone, B. Stokes, T. Stroman, Y. Takagi, Y. Takahashi, M. Takamura, M. Takeda, R. Takeishi, A. Taketa, M. Takita, Y. Tameda, H. Tanaka, K. Tanaka, M. Tanaka, Y. Tanoue, S. Thomas, G. Thomson, P. Tinyakov, I. Tkachev, H. Tokuno, T. Tomida, S. Troitsky, R. Tsuda, Y. Tsunesada, Y. Uchihori, S. Udo, T. Uehama, F. Urban, T. Wong, K. Yada, M. Yamamoto, K. Yamazaki, J. Yang, K. Yashiro, F. Yoshida, T. Yoshioka, Y. Zhezher and Z. Zundelet al. (click to show)*: corresponding author
Pre-published on:
July 30, 2021
Published on:
March 18, 2022
Abstract
We report on an improvement of deep learning techniques used for identifying primary particles of atmospheric air showers. The progress was achieved by using two neural networks. The first works as a classifier for individual events, while the second predicts fractions of elements in an ensemble of events based on the inference of the first network. For a fixed hadronic model, this approach yields an accuracy of 90% in identifying fractions of elements in an ensemble of events.
DOI: https://doi.org/10.22323/1.395.0384
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.