The Radar Echo Telescope for Neutrinos (RET-N)
Presented by
K. de Vries* and S. Prohira on behalf of
P. Allison, J. Beatty, D. Besson, A. Connolly,
P. Dasgupta, C. Deaconu, S. De Kockere, D. Frikken, C. Hast, E. Huesca Santiago, C.Y. Kuo, U.A. Latif, V. Lukic, T. Meures, K. Mulrey, J. Nam, A. Nozdrina, E. Oberla, J. Ralston, C. Sbrocco, R.S. Stanley, J. Torres, S. Toscano, D. Van den Broeck, N. van Eijndhoven and S. Wisselet al. (click to show)
Pre-published on:
July 30, 2021
Published on:
March 18, 2022
Abstract
We present the Radar Echo Telescope for Neutrinos (RET-N). RET-N focuses on the detection of the cosmic neutrino flux above PeV energies by means of the radar detection technique. This method aims to bridge the energy gap between the diffuse neutrino flux detected by IceCube up to a few PeV and the sought for cosmogenic neutrinos at EeV energies by the in-ice Askaryan detectors, as well as the air-shower radio detectors. The radar echo method is based on the detection the ionization trail in the wake of a high-energy neutrino-induced particle cascade in ice. This technique, recently validated in a beam test (T576 at SLAC) is also the basis for the RET-N pathfinder experiment, RET-CR, which is currently under development. Based on the T-576 results, we show that the radar echo method leads to very promising sensitivities to detect cosmic neutrinos in the PeV-EeV region and above. We present the RET-N project and the results of our sensitivity studies.
DOI: https://doi.org/10.22323/1.395.1195
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.