Horizontal muon track identification with neural networks in HAWC
on behalf of the HAWC Collaboration,
A.U. Abeysekara,
A. Albert,
R.J. Alfaro,
C. Alvarez,
J.d.D. Álvarez Romero,
J.R. Angeles Camacho*, J.C. Arteaga Velazquez, A.B. Kollamparambil, D.O. Avila Rojas, H.A. Ayala Solares, R. Babu, V. Baghmanyan, A.S. Barber, J. Becerra Gonzalez, E. Belmont-Moreno, S. BenZvi, D. Berley, C. Brisbois, K.S. Caballero Mora, T. Capistrán, A. Carramiñana, S. Casanova, O. Chaparro-Amaro, U. Cotti, J. Cotzomi, S. Coutiño de León, E. de la Fuente, C.L. de León, L. Diaz, R. Diaz Hernandez, J.C. Díaz Vélez, B. Dingus, M. Durocher, M. DuVernois, R. Ellsworth, K. Engel, M.C. Espinoza Hernández, J. Fan, K. Fang, M. Fernandez Alonso, B. Fick, H. Fleischhack, J.L. Flores, N.I. Fraija, D. Garcia Aguilar, J.A. Garcia-Gonzalez, J.L. García-Luna, G. García-Torales, F. Garfias, G. Giacinti, H. Goksu, M.M. González, J.A. Goodman, J.P. Harding, S. Hernández Cadena, I. Herzog, J. Hinton, B. Hona, D. Huang, F. Hueyotl-Zahuantitla, M. Hui, B. Humensky, P. Hüntemeyer, A. Iriarte, A. Jardin-Blicq, H. Jhee, V. Joshi, D. Kieda, G.J. Kunde, S. Kunwar, A. Lara, J. Lee, W.H. Lee, D. Lennarz, H. Leon Vargas, J. Linnemann, A.L. Longinotti, R. Lopez-Coto, G. Luis-Raya, J. Lundeen, K. Malone, V. Marandon, O.M. Martinez, I. Martinez Castellanos, H. Martínez Huerta, J. Martínez-Castro, J. Matthews, J. McEnery, P. Miranda-Romagnoli, J.A. Morales Soto, E. Moreno Barbosa, M. Mostafa, A. Nayerhoda, L. Nellen, M. Newbold, M.U. Nisa, R. Noriega-Papaqui, L. Olivera-Nieto, N. Omodei, A. Peisker, Y. Pérez Araujo, E.G. Pérez Pérez, C.D. Rho, C. Rivière, D. Rosa-Gonzalez, E. Ruiz-Velasco, J. Ryan, H.I. Salazar, F. Salesa Greus, A. Sandoval, M. Schneider, H. Schoorlemmer, J. Serna-Franco, G. Sinnis, A.J. Smith, W.R. Springer, P. Surajbali, I. Taboada, M. Tanner, K. Tollefson, I. Torres, R. Torres Escobedo, R.M. Turner, F.J. Urena Mena, L. Villaseñor, X. Wang, I.J. Watson, T. Weisgarber, F. Werner, E.J. Willox, J. Wood, G. Yodh, A. Zepeda and H. Zhouet al. (click to show)*: corresponding author
Pre-published on:
July 06, 2021
Published on:
March 18, 2022
Abstract
Nowadays the implementation of artificial neural networks in high-energy physics has obtained excellent results on improving signal detection. In this work we propose to use neural networks (NNs) for event discrimination in HAWC. This observatory is a water Cherenkov gamma-ray detector that in recent years has implemented algorithms to identify horizontal muon tracks. However, these algorithms are not very efficient. In this work we describe the implementation of three NNs: two based on image classification and one based on object detection. Using these algorithms we obtain an increase in the number of identified tracks. The results of this study could be used in the future to improve the performance of the Earth-skimming technique for the indirect measurement of neutrinos with HAWC.
DOI: https://doi.org/10.22323/1.395.1036
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.