Transversity in inclusive DIS and novel TMD sum rules
A. Accardi* and A. Signori
Pre-published on:
September 20, 2018
Published on:
November 23, 2018
Abstract
A reanalysis of collinear factorization for inclusive Deep Inelastic Scattering shows that a novel, non perturbative spin-flip term associated with the invariant mass of the produced hadrons couples, at large enough Bjorken $x_B$, to the target's transversity distribution function. The resulting new contribution to the $g_2$ structure function can potentially explain the discrepancy between recent calculations and fits of this quantity. The new term also breaks the Burkhardt-Cottingham sum rule, now featuring an interplay between the $g_2$ and $h_1$ functions that calls for a re-examination of their small-$x$ behavior. As part of the calculation leading to these results, a new set of TMD sum rules is derived by relating the single-hadron quark fragmentation correlator to the fully dressed quark propagator by means of integration over the hadronic momenta and spins. A complete set of momentum sum rules is obtained for transverse-momentum-dependent quark fragmentation functions up to next-to-leading twist.
DOI: https://doi.org/10.22323/1.316.0158
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.