PoS - Proceedings of Science
Volume 301 - 35th International Cosmic Ray Conference (ICRC2017) - Session Cosmic-Ray Direct. CRD- direct measurements
Introduction to the High Energy cosmic-Radiation Detection (HERD) Facility onboard China’s Future Space Station
S.N. Zhang*, O. Adriani, H. Consortium, S. Albergo, G. Ambrosi, Q. An, P. Azzarello, Y. Bai, T. Bao, P. Bernardini, B. Bertucci, X. Bi, M. Bongi, S. Bottai, W. Cao, Z. Cao, J. Chai, J. Chang, G. Chen, Y. Chen, Z. Chen, X.H. Cui, Z.G. Dai, R. D’Alessandro, M. Di Santo, Y. Dong, M. Duranti, Y. Fan, K. Fang, C.Q. Feng, H. Feng, V. Formato, P. Fusco, J. Gao, F. Gargano, N. Giglietto, Q. Gou, Y.Q. Guo, H. He, H. Hu, P. Hu, G.S. Huang, J. Huang, Y.F. Huang, H. Li, R. Li, Y. Li, Z. Li, E.W. Liang, S. Lin, H. Liu, H. Liu, J.B. Liu, S.B. Liu, S.M. Liu, X. Liu, F. Loparco, J. Lyu, G. Marsella, M.N. Mazziottai, I.D. Mitri, N. Mori, P. Papini, M. Pearce, W. Peng, M. Pohl, Z. Quan, F. Ryde, D. Shi, M. Su, X.L. Sun, X. Sun, A. Surdo, Z.C. Tang, E. Vannuccini, R. Walter, B. Wang, B. Wang, J.C. Wang, J.M. Wang, J. Wang, L. Wang, R. Wang, X.L. Wang, X. Wang, Z. Wang, D.M. Wei, B. Wu, J. Wu, Q. Wu, X. Wu, X.F. Wu, M. Xu, Z.Z. Xu, H.R. Yan, P.F. Yin, Y.W. Yu, Q. Yuan, M. Zha, L. Zhang, L. Zhang, Y. Zhang, Y.L. Zhang and Z.G. Zhaoet al. (click to show)
Full text: pdf
Pre-published on: August 16, 2017
Published on: August 03, 2018
Abstract
The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signal of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 10$^4$ cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1\% for electrons and gamma-rays beyond 100 GeV, 20\% for protons from 100 GeV to 1 PeV; electron/proton separation power better than $10^{-5}$; effective geometrical factors of $>$3 ${\rm m}^{2}{\rm sr}$ for electron and diffuse gamma-rays, $>$2 $ {\rm m}^{2}{\rm sr}$ for cosmic ray nuclei. R\&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.
DOI: https://doi.org/10.22323/1.301.1077
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.