ENUBET: High Precision Neutrino Flux Measurements in Conventional Neutrino Beams
F. Pupilli*,
G. Ballerini,
A. Berra,
R. Boanta,
M. Bonesini,
C. Brizzolari,
G. Brunetti, M. Calviani, S. Carturan, M.G. Catanesi, S. Cecchini, F. Cindolo, A. Coffani, G. Collazuol, E. Conti, F. Dal Corso, G. De Rosa, A. Gola, R. Intonti, C. Jollet, Y. Kudenko, M. Laveder, A. Longhin, P.F. Loverre, L. Ludovici, L. Magaletti, G. Mandrioli, A. Margotti, V. Mascagna, N. Mauri, A. Meregaglia, M. Mezzetto, M. Nessi, A. Paoloni, M. Pari, G. Paternoster, L. Patrizii, C. Piemonte, M. Pozzato, M. Prest, E. Radicioni, C. Riccio, A.C. Ruggeri, M. Soldani, G. Sirri, M. Tenti, F. Terranova, E. Vallazza, M. Vesco, L. Votano and E. Wildneret al. (click to show)*: corresponding author
Pre-published on:
February 24, 2018
Published on:
June 18, 2018
Abstract
The ENUBET project aims at demonstrating that the systematics in neutrino fluxes from conventional beams can be reduced to 1% by monitoring positrons from K$_{e3}$ decays in an instrumented decay tunnel, thus allowing a precise measurement of the $\nu_e$ (and $\overline{\nu}_e$) cross section. This contribution will report the results achieved in the first year of activities. The expected neutrino fluxes at an hypothetical far detector have been estimated. Progress have been made in the design of the hadron beamline and a complete simulation of the positron tagger allowed to determine its performance in terms of signal selection efficiency and purity. A deep R&D program has been pursued to explore different technical solution for the tagger instrumentation. Test beam exposures of detector prototypes have been performed to assess their response to pions, electrons and muons and to validate the Monte Carlo simulation.
DOI: https://doi.org/10.22323/1.295.0087
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.