Electron cloud trapping in combined function dipole magnets
S. Antipov* and
S. Nagaitsev*: corresponding author
Published on:
April 19, 2017
Abstract
Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. We demonstrate that electron cloud can be trapped in a combined function magnet. We present the results of analytical estimates, and compare them to numerical simulations of electron cloud formation. In a combined function magnet the electron cloud is located at the beam center and the ratio of trapped particles can be as high as 1%. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly decreases the time of build-up on the next revolution. The trapping creates a mechanism for the beam to act on itself on the next turn and can lead to a head-tail instability.
DOI: https://doi.org/10.22323/1.282.0773
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.