The large $N$ limit of the topological susceptibility of Yang-Mills gauge theory
M. Cè,
M.F. Garcia Vera*,
L. Giusti and
S. Schaefer*: corresponding author
Pre-published on:
February 16, 2017
Published on:
March 24, 2017
Abstract
We present a precise computation of the topological susceptibility $\chi_{_\mathrm{YM}}$ of SU$(N)$ Yang-Mills theory in the large $N$ limit. The computation is done on the lattice, using high-statistics Monte Carlo simulations with $N=3, 4, 5, 6$ and three different lattice spacings. Two major improvements make it possible to go to finer lattice spacing and larger $N$ compared to previous works. First, the topological charge is implemented through the gradient flow definition; and second, open boundary conditions in the time direction are employed in order to avoid the freezing of the topological charge. The results allow us to extrapolate the dimensionless quantity $t_0^2\chi_{_\mathrm{YM}}$ to the continuum and large $N$ limits with confidence. The accuracy of the final result represents a new quality in the verification of large $N$ scaling.
DOI: https://doi.org/10.22323/1.256.0350
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.