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Accurate calibration of the Telescope Array Fluorescence Detector (TA-FD) and the atmosphere is
crucial for precise analysis of Ultra High Energy Cosmic Rays (UHECRs) using the atmospheric
fluorescence method. This paper focuses on two key aspects of calibration: the pointing direction
of the TA-FD and the atmospheric transparency as measured by the Vertical Aerosol Optical Depth
(VAOD). The pointing direction of the TA-FD was analyzed with an accuracy of ±0.03 degrees
using the Opt-copter, a drone-mounted LED light source. The impact of this pointing accuracy on
cosmic ray analysis, including the biases and systematic uncertainties it introduces, is estimated.
Additionally, the TA experiment continuously observes UHECRs with the FD, capturing air
showers induced by primary UHECRs. Monthly VAOD values, determined through Central Laser
Facility (CLF) operation, exhibit a seasonal dependence. Incorporating this seasonal variation
into air shower analysis can improve the accuracy of primary energy and Xmax measurements,
along with the associated systematic uncertainties.
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1. Introduction

The Telescope Array (TA) experiment, located in Utah, USA, has been continuously observing
ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1018 eV for nearly 20 years.
The experiment employs several methods to detect UHECRs. We have 507 surface detectors
(SD) to detect particles that reach the surface of the ground directly. Additionally, it operates three
fluorescence detector (FD) stations to capture the fluorescence emitted by the atmosphere from an air
shower. Figure 1a shows the site map of the TA experiment. Figure 1b shows the appearance of TA-
FD. Accurate calibration of the telescopes and atmospheric conditions is essential when estimating

(a) Site map of the TA. (b) The appearance of TA-FD

Figure 1: Left: Site map of the TA. Black squares show the surface detectors. Green squares show the
florescence detectors. Blue cross show the central laser facility. Right: The appearance of florescence
detector.

the energy or composition of the primary particles using FD. The TA experiment requires more
accurate analysis using FD to resolve the differences between TA and other experiments and to
reduce the systematic uncertainties among FD stations. For this reason, we analyzed the optical
properties of the FD in greater detail of FD and developed a monthly atmospheric transparency
model with higher time resolution.

In this proceedings paper, we apply the new calibration factors, the telescope pointing direction
and monthly model of the atmospheric transparency, to the cosmic ray analysis. We evaluate the
impact of each calibration on the cosmic ray analysis using simulations.

2. Telescope pointing direction

2.1 Opt-copter

The “Opt-copter” is a calibration device for determining the telescope’s pointing direction,
equipped with a UV-light source and the RTK-GPS for positioning on the drone. Figure 2 shows the
appearance of the Opt-copter. This device is flown within the field of view of the telescope, and the
light source mounted on the drone is observed with the telescope to analyze the optical properties
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of the FD. The position accuracy of the RTK-GPS is typically 10 cm, which corresponds to a
directional accuracy of 0.02 degrees. The FD pointing is analyzed by comparing the position of the
light source on the drone and center of gravity of the imaged captured by FD. Table 1 shows the shift
of BRM-FD’s pointing direction from the starlight analysis (previous analysis). The uncertainty of
this analysis is ±0.03 degrees (RTK-GPS resolution + Systematic error due to the alignment of the
center PMTs on the cameras).[1] [2]

Figure 2: The appearance of the Opt-copter

Table 1: The pointing shift of the telescope at BRM station analyzed using the Opt-copter. The uncertainty
of the Opt-copter analysis is 0.03 degrees.

FD00 FD01 FD02 FD03 FD04 FD05 FD06 FD07 FD08 FD09 FD10 FD11
ΔAzimuth [deg.] 0.05 0.00 0.04 0.04 0.04 0.02 0.01 -0.04 0.01 -0.05 -0.02 0.01
ΔElevation [deg.] 0.11 -0.04 0.02 -0.03 -0.04 -0.12 -0.05 -0.14 -0.12 -0.19 -0.14 -0.15

2.2 Effect of the telescope pointing direction

The FD pointing direction obtained using the Opt-copter has greater accuracy than that deter-
mined through starlight analysis. In the Opt-copter analysis, the difference was as large as -0.19
degrees which exceeds the analysis error assumed in the starlight method. Therefore, it is necessary
to perform cosmic ray analysis using the geometry derived from the Opt-copter. We estimate the
effect of changing the telescope pointing direction on Xmax. We apply the FD pointing direction
obtained by the Opt-copter analysis and those obtained by the starlight analysis to the reconstruction.
We also use the Opt-copter geometry in the simulation to replicate actual FD observations. Figure
3a is the reconstruction Xmax with the two FD pointing directions from the same simulation. The
Xmax obtained with the Opt-copter-based pointing direction is deeper than that obtained with the
starlight-based direction because the Opt-copter’s pointing direction is at a lower angle. Figure 3b
is the reconstructed Xmax difference (Xcopter

max − Xstar
max) of the same event for the effect on a single

event. This effect results in a shift +1.2 to +3.5 g/cm2 over the energy range of 1018.5 to 1020.0 eV.

2.3 Bias and systematic uncertainty by the pointing direction

We estimate the reconstruction bias and the systematic uncertainty in Xmax using the FD
pointing obtained by the Opt-copter analysis. Figure 4a shows the reconstruction bias, represented
as the average of the histogram of the difference Xrecon

max −Xsimu
max for each FD pointing direction. The
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(a) Reconstructed Xmax average (b) ΔXmax average

Figure 3: Left: The reconstructed Xmax average using Opt-copter geometry and star geometry. Right: Effect
of the telescope pointing direction for Xmax. The average value of reconstructed Xcopter

max − Xstar
max.

current bias using the starlight-based geometry is nearly the same as that using the Opt-copter-based
geometry. Figure 4b shows the systematic uncertainty in Xmax due to pointing accuracy (±0.03
degrees). This is the difference between the reconstructed Xmax values obtained from the Opt-copter
analysis with the FD pointing and those obtained when accounting for the pointing accuracy. This
effect results in an uncertainty of ± 0.9 to ± 1.5 g/cm2 over the energy range of 1018.5 to 1020.0 eV.

(a) Reconstruction bias of Xmax using each telescope
geometry

(b) Systematic uncertainty of Xmax from the telescope
pointing accuracy

Figure 4: Left: Result of the reconstruction bias using the Opt-copter geometry and the bias using the star
geometry. Right: Result of the systematic uncertainty of the Xmax from the telescope pointing accuracy in
the energy range of 1018.5 to 1020.0 eV. The telescope pointing accuracy is ±0.03 degrees.

3. Atmospheric Transparency

3.1 Central Laser Facility

A laser system is located at the center of three FD stations in TA site, and the light scattered
by the atmosphere is observed by each FD station. This system is called CLF.[3] Figure 5 shows
the appearance of the CLF system. The laser is emitted vertically at the CLF, and the side-scattered
light is captured by the FD to calculate atmospheric transparency. The Vertical Aerosol Optical
Depth (VAOD) represents the atmospheric transparency obtained from CLF operations.
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Figure 5: Appearance of the CLF container.

Figure 6: Median of VAOD with error bars indicate
the range which is 1𝜎 to the left and right from the
median of its distribution for each month.

3.2 Monthly Variation of VAOD

Figure 6 shows the median of VAOD at 5km above ground level with 1𝜎 error bars at BRM
and LR stations. VAOD = 0.04 (blue horizontal line) is the constant average value. VAOD in July
is the highest, and VAOD in November is the lowest. It appears that there are fluctuations up and
down around the 0.04 line. It tends to rise during summer and fall during winter.[4]

(a) Systematic uncertainty in each month
using BR station

(b) Systematic uncertainty in each month
using LR station

Figure 7: Results of the systematic uncertainty in each month of primary energy in 1019 eV. The blue plots
are with the constant VAOD and the red plots are with the monthly VAOD.

3.3 Systematic uncertainty at each month

We applied both constant VAOD and monthly VAOD to reconstruct the primary energy and
compared the results with event-by-event results to estimate the systematic uncertainty. Figure 7
shows the systematic uncertainty in each month of primary energy in 1019 eV at BRM and LR
stations. There is a bias of approximately +12% in November and -11% in July when using constant
VAOD at both stations. This seasonal dependence is removed when using monthly VAOD.
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3.4 Systematic uncertainty at each energy

We estimate the systematic uncertainty in primary energy by adding results each month. Figure
8 show the result of the systematic uncertainty at three kinds of primary energy (1018 eV, 1019 eV,
1020 eV) at BRM and LR stations, respectively. The blue plots are with constant VAOD, and the
red plots are with monthly VAOD. The systematic uncertainty with constant VAOD in 1019 eV are
0.0+15.4

−10.9 % (BRM) and 0.0+14.9
−12.2 % (LR), respectively, and the systematic uncertainty with monthly

VAOD are 0.0+10.6
−9.3 % (BRM) and 0.0+10.9

−9.7 % (LR), respectively. We confirmed that using monthly
VAOD reduces the systematic uncertainty in each primary energy due to aerosols across all energy
regions.

(a) Systematic uncertainty at each energy
using BR station

(b) Systematic uncertainty at each energy
using LR station

Figure 8: Results of the systematic uncertainty at three kinds of primary energy (1018 eV, 1019 eV, 1020 eV).
The blue plots are with the constant VAOD and the red plots are with the monthly VAOD.

4. Summary

The pointing direction of the FD was analyzed with higher accuracy. We evaluated the effect of
the FD pointing direction on cosmic ray analysis, the reconstruction bias using the copter geometry
and the systematic uncertainty due to the pointing accuracy (±0.03 degrees) of the FD. When we
use the copter geometry, Xmax shifts deeper by +1.2 to +3.5 g/cm2. The systematic uncertainty due
to the pointing accuracy of the FD is about ±1 g/cm2.

A monthly atmospheric transparency model with higher time resolution was also developed. We
estimated the bias and systematic uncertainties when using this model. Compared to conventional
analysis, we find that the analysis could be performed without bias throughout the year, and the
systematic uncertainties are also reduced.
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