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The Pierre Auger Observatory is the largest detector for the study of extensive air showers induced
by ultra-high-energy cosmic rays (UHECRs). Its hybrid detector design allows the simultaneous
observation of different parts of the shower evolution using various detection techniques. To ac-
curately understand the physics behind the origin of UHECRs, it is essential to determine their
mass composition. However, since UHECRs cannot be measured directly, estimating their masses
is highly non-trivial. The most common approach is to analyze mass-sensitive observables, such
as the number of secondary muons and the atmospheric depth of the shower maximum.
An intriguing part of the shower to estimate these observables is its footprint. The shower foot-
print is detected by ground-based detectors, such as the Water-Cherenkov detectors (WCDs) of the
Surface Detector (SD) of the Observatory, which have an uptime of nearly 100%, resulting in a
high number of observed events. However, the spatio-temporal information stored in the shower
footprints is highly complex, making it very challenging to analyze the footprints using analyti-
cal and phenomenological methods. Therefore, the Pierre Auger Collaboration utilizes machine
learning-based algorithms to complement classical methods in order to exploit the measured data
with unprecedented precision. In this contribution, we highlight these machine learning-based
analyses used to determine high-level shower observables that help to infer the mass of the pri-
mary particle, with a particular focus on analyses using the shower footprint detected by the WCDs
and the Surface Scintillator Detectors (SSD) of the SD. We show that these novel methods show
promising results on simulations and offer improved reconstruction performance when applied to
measured data.
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1. Introduction

Cosmic rays above an energy of 1 EeV are commonly referred to as ultra-high-energy cosmic
rays (UHECRs). Due to their low flux [1], the direct detection of UHECRs is not feasible. How-
ever, when UHECRs interact with the atmosphere, they produce a cascade of secondary particles
commonly referred to as extensive air showers (EAS). The Pierre Auger Observatory is the largest
detector for the study of extensive air showers induced by UHECRs. It is located in Argentina, in
the Province of Mendoza, and is designed to simultaneously detect EAS using a hybrid technique.
One of the main scientific goals of the Pierre Auger Observatory is to understand the physics behind
the sources of UHECRs. Having orders of magnitude higher energy than any particle accelerated
by human-made devices, the origin of UHECRs must be attributed to the most extreme processes
in the Universe. To gain insight into these processes and to potentially identify them, an important
piece of information is the mass composition of UHECRs. Analyses in this regime are based on
so-called ‘mass-sensitive observables’ (MSOs). Essentially, MSOs are properties of EAS that sta-
tistically encode the mass of the primary particle. The most promising of these MSOs are the depth
of the shower maximum -max and the number of muons #µ produced in the EAS [2]. Since the
former is related to the electromagnetic and the latter to the hadronic part of the shower cascade
both observables jointly contribute to the determination of the mass composition.

This contribution focuses on vertical showers with zenith angles \ ≤ 60° simulated for and
observed by the Pierre Auger Observatory. In this zenith range, the direct detection of -max and #µ

is based on the Fluorescence Detector [3] and the Underground Muon Detector [4], respectively.
However, both of these specialized detector systems are restricted by uptime and coverage. Such a
reduction in exposure can be mitigated by inferring shower observables from the measurements of
the ground particle distributions by the surface detector (SD) stations of the Pierre Auger Observa-
tory which have near-perfect uptime. The SD consists of various triangular grids of regularly spaced,
autonomous detector stations that sample the distribution of particles of an EAS at ground level,
referred to as shower footprint. Initially consisting only of water-Cherenkov detectors (WCDs), new
additional particle detectors, such as the surface scintillator detector (SSD), have been added to the
SD stations during a major upgrade of the Observatory named AugerPrime [5].

Exploiting the complex spatio-temporal information of the shower footprint using classical ap-
proaches is incredibly difficult and requires an accurate understanding of the universal behavior of
air showers and the correct modeling of the spatio-temporal signal distribution at ground level [6].
Nevertheless, using data-driven approaches mitigates the need to find all the relevant information
stored in the shower footprint. A simple way to work data-driven is by using neural networks (NNs)
uncovering important features during the training process. Due to their modularity and adaptability
NNs allow for an easy mapping of non-trivial shower footprint inputs to high-level shower observ-
ables.

1.1 Base neural network architecture

At the time of writing, all NNs used for the shower-by-shower reconstruction of high-level
shower observables from SD data share the same ‘architectural’ ideas. Although, the elementary
building blocks of all NNs differ, each NN is essentially composed of three separate sub-NNs that
are optimized for addressing subtasks.
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The first sub-NN (sNN1) essentially compresses the information of the time signals measured
by the various detectors of the SD stations, called traces, into a small set of (scalar) trace features.
Two stations triggered by the same EAS have a high probability of measuring different parts of the
developing shower. There is little additional information from correlating signal bins of multiple
traces, even if the traces are from neighboring stations. Hence, each trace, coming from the same
detector, is – in general – treated and processed by sNN1 in exactly the same way. The architec-
ture of sNN1 normally resembles NNs used for audio processing or language interpretation. The
features computed from the traces are then added to a mixture of handcrafted features derived from
reconstructed observables, e.g., the standardized relative trigger times. The resulting set of features
is then¹ encoded in a 3D tensor where the first two dimensions correspond to the relative positions
in the SD of the triggered stations. Normally, the station with the largest signal is placed in the
center of the spatial coordinates of the 3D tensor. An example of an encoding procedure is outlined
in [7]. The 3D tensor is then used as the input for the second sub-NN (sNN2). How the encoding
is done and which additional features are selected depends on the analysis and the architecture of
sNN2. The architecture of sNN2 is chosen in such a way that the sets of features of all triggered
detectors can be correlated with each other. Thus, the architecture is designed in a similar way to
that of NNs used in image recognition. In this analogy, the ‘color channels’ correspond to the found
and selected features. The output of this sub-NN can the be used as input for one (or more) sub-NNs
which combine all the information to predict one (or more) of the desired shower observables.

1.2 Simulated data sets

The training and test data sets used for each study presented in the following sections are not
exactly the same. Although, the data sets differ in size, the preprocessing procedures, and the choice
of inputs, there are commonalities. Namely, all data sets consist of detector simulations, performed
with Offline [8], of air shower simulations, performed with CORSIKA [9]. The primary particle
distribution follows an equal mixture of four primaries (p, He, O, Fe). The simulated showers are
uniformly distributed in sin2 \ (\ ∈ [0°, 65°)) and in logarithmic energy (lg(�/eV) ∈ [18.0, 20.2]).
For each study the training and test sets are non-intersecting. More detailed information of the used
data sets can be found in the corresponding primary sources.

2. Neural networks for the reconstruction of shower observables

In general, the setup presented in Section 1.1 is applicable to any shower observable assum-
ing that there is useful information encoded in the footprint of an EAS. However, to estimate the
performance of NN-based estimators it is convenient to focus on NNs predicting shower observ-
ables which can be estimated using standard reconstructions methods or observed by specialized
detectors.

2.1 Estimation of shower energy

The standard energy estimator of the SD-1500 depends only on a signal estimate at a prede-
fined distance to the shower axis and the reconstructed zenith angle of the air shower. The free

¹Normally, the traces are already encoded into a similar tensor simplifying the NN architecture. However, this is
technically not necessary since the encoding only matters in the second part of the NNs.
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Figure 1: Bias (left) and resolution (right) of the relative energy error as a function of the logarithmic
Monte-Carlo energy for different primary particles for the DEC (see Section 2.1) and the NN-based energy
predictor. The underlying data are uniformly distributed in logarithmic energy and use equal proportions for
the different primary particles. The NN-based predictor has a smaller inter-primary bias and better resolution
than its classical counterpart. Kindly provided by Fiona Ellwanger.

parameters of the functional form of the estimator are gained from likelihood minimization using
showers detected by the FD and SD simultaneously, called hybrid events, making it independent
of air shower simulations. Details can be inferred from [10]. Hence, to make a fair comparison
between an NN-based and the standard energy estimator on simulations, it is mandatory to create a
similar energy estimator on simulations. Such an estimator can be determined from a (direct) global
fit to simulated EAS using the functional form of the standard energy estimator. This new baseline
model [11] is denoted as direct energy calibration (DEC).

Due to the mass-energy degeneracy and the simplicity of the method, the DEC exhibits a strong
primary-dependent bias of up to ±10%, assigning on average a lower energy to protons and a higher
energy to iron (see Fig. 1). By using an NN-based approach this bias (at least) is halved. At the
same time the standard deviation of the relative energy error, a measure for accuracy, is improved by
more than 3 percentage points over the whole energy range. Thus, the NN prediction accounts better
for the primary mass information contained in the shower footprint. Since an unbiased and more
accurate energy estimate is crucial for the correct interpretation of MSOs, the NN-based model is
preferred when considering only simulations.

However, due to shortcomings in both detector and shower simulations, e.g., [12], a direct ap-
plication of the NN-based estimator on measurements is not straightforward. Even after calibration
with direct measurements of the FD energy, the performance of the NN-based energy estimator
decreases significantly. Using hybrid events, the energy predictions of the NN reproduces the FD
energy measurements on a similar level as the standard energy estimator [11].

At the time of writing, it is still unclear how to adequately account for all systematic effects
and differences between simulations and measurements in a general way. Finding procedures that
allow to tap into the full potential of NN-based energy estimators seen in simulations is the subject
of future studies. Nevertheless, [11] demonstrates that one of the main problems, when using NN-
based approaches for data of the Pierre Auger Observatory, is the transition to real measurements
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FIG. 11: Energy evolution of (a) the average depth of shower maximum ⟨Xmax⟩ and (b) the fluctuations of the shower maximum σ(Xmax) as
determined using the FD reconstruction [62] (grey open squares) and the DNN Xmax predictions (black circles). Red (blue) lines indicate
expectations for a pure proton (iron) composition for various hadronic models.

energy, also reported in previous SD-based studies using the
risetime of signals in the WCDs [21].

The elongation rate D10 is defined by the change of ⟨Xmax⟩
per decade of energy

D10 =
d⟨Xmax⟩

dlog10(E)
= D̂10

(
1− d⟨lnA⟩

dln(E)

)
,

where A denotes the primary particle mass. When measur-
ing D10, a deviation from the elongation rate D̂10, which is in
a very good approximation, universal across all hadronic in-
teraction models and primary nuclei, can be traced back to a
change in the primary mass composition. The elongation rate
obtained using the SD over the whole energy range amounts
to D10 = (24.1 ± 1.2) gcm−2 decade−1 in good agreement
with the FD result

(
(26±2) gcm−2

)
[62]. However, the re-

duced χ2/ndf = 46.7/13 obtained for the SD data indicates
that another substructure exists, as will be comprehensively
discussed in the next Section IV A.

The evolution in σ(Xmax), sensitive to the composition mix-
ing, is shown in Fig. 11b. We find a decrease of σ(Xmax) as
a function of energy and a very good agreement between the
measurements of the SD and the FD. This confirms for the
first time the transition from a lighter and mixed composition
into a heavier and purer composition with large statistics. At
the highest, previously inaccessible energies (> 50 EeV), the
fluctuations appear to stabilize and remain small. However,
more statistics are needed to examine the composition evolu-
tion at these energies in more detail. Given the limited dif-
ferences in the interaction model predictions of σ(Xmax), the
small fluctuations in Xmax beyond 30 EeV clearly exclude a

scenario with a substantial fraction of protons and light nuclei
in the UHECR composition. Additionally, at around 10 EeV,
the fluctuations appear to stay constant.

A. Discussion of breaks in the elongation rate

The observation of an elongation rate similar to the FD
but obtained using the comprehensive SD data set that fea-
tures χ2/ndf ≈ 3.6, indicates that a simple linear model is not
describing the data well (see Fig. 12a), suggesting the exis-
tence of a substructure to be analyzed. The measurement of
σ(Xmax) also shows a non-continuous decrease of fluctuations
with energy.

In Fig. 12, we study the evolution in the UHECR mass com-
position using different models. We analyze the evolution us-
ing broken-line fits with a different number of breaks. The
simplest model beyond a constant elongation rate is a broken-
line fit with one fitted break point shown in Fig. 12b that also
cannot describe our data reasonably (χ2/ndf ≈ 3.4). Con-
sidering Wilks’ theorem, we compared the χ2 values of two
nested models, in which the model of a constant elongation
rate is used as the null hypothesis and test if it can be rejected
with more complex models. A model with two breaks in the
elongation rate can reject the constant elongation rate hypoth-
esis at a significance of 3.4σ (see Fig. 12c). In Fig. 12d, we
show a model with three breaks in the elongation rate, where
the slopes and the break position were determined by a fit.
This model can reject the hypothesis of a constant elongation
rate at a level of 4.6σ and a single-break model at a level of

Figure 2: First (left) and second (right) moments of -max as a function of reconstructed SD energy comparing
the direct measurement (FD) and NN-based reconstruction [17]. The red and blue lines (of different line style)
represent the predictions of the most commonly used hadronic interaction models (in order of appearance
[14–16]) for pure proton and iron compositions, respectively. The reconstructed moments of both methods
are in agreement with each other.

which has to be handled carefully.

2.2 Estimation of depth of the shower maximum

The NN-based approach in Section 2.1 demonstrates that NNs exploit the mass information
contained in the footprint improving the primary-dependent bias. Hence, it is reasonable to develop
NN-based estimators that target MSOs directly, mitigating the need for complex, spatio-temporal
modeling of ground signals [6]. The best shower observable to test this is the depth of the shower
maximum -max, since it is measured directly by the FD.

Using a much more refined architecture as in Section 2.1, [13] summarizes the performance
of such an NN on simulations and on measurements. Again, due to the shortcomings in simula-
tions, the NN-based approach requires corrections² to account for effects, such as yearly variation
of atmospheric conditions, before being applied to measurement data. This removes unphysical
modulations in the predictions. After all corrections are applied, the predictions of the NN are still
shifted by about 30 g cm−2 when comparing to direct measurements of the FD. This shift can be
attributed to the muon puzzle [12]. Since the shift is nearly constant over the whole energy range,
it is calibrated away using hybrid events. The -max predictions of the NN agree well with the -max

measurements of the FD in the first and second moments of the -max distributions (see Fig. 2). Both
methods show a transition from a lighter to a heavier composition of UHECRs.

Although, the systematic uncertainty is higher for the SD predictions, the main advantage of
the SD-based estimation of -max is the significant increase in statistics by a factor of about eight.
The use of the NN predictions reveals additional breaks in the first moment that roughly correspond

²Note that all corrections are done in such a way to preserve the mean value of the predictions.
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to established features in the UHECR spectrum [17]. Moreover, the additional data allows to extend
the first and second moments beyond 50 EeV.

2.3 Impact of detector upgrade

In addition to well-performing reconstruction tools, machine learning-based predictors can also
be used to study how the amount of information affects the reconstruction quality of shower vari-
ables [18]. Fig. 3 shows two separate comparisons of five independent machine learning-based
estimators to reconstruct the relative³ muon number 'µ, where the first entry, boosted decision tree
(BDT), is the only method not based on NNs. On the left side of Fig. 3 is the linear correlation
coefficient of the prediction and the Monte-Carlo value and on the right side the classification ac-
curacy for all predictors separately. The convolutional neural network (CNN) in the middle acts
as the baseline. The CNN uses encoded footprints as inputs and a convolution-based architecture
for sNN1 (see Section 1.1). Thus, the spatial information of the footprint and the temporal infor-
mation of the traces are accessible. The alternative NN (ALT) has a similar architecture like the
CNN. However, the sNN1 is replaced by two commonly used trace features, the total signal and the
rise time⁴. The inputs used for the BDT are simplified even more. They are only scalar footprint
information concatenated to a one-dimensional vector. Both ALT and BDT perform worse than the
CNN. Therefore, the spatial information in the shower footprint as well as the temporal informa-
tion extracted directly from the features are taking into account in the CNN. In the recurrent neural
network (RNN) sNN1 is replaced by stacked LSTM layers allowing a more refined trace feature
extraction. Again, this impacts the overall quality of 'µ predictions. Due to the flexibility of the
NNs, new measurement devices on the SD detector stations, such as the scintillator detectors, can be
easily added to the reconstruction pipeline in the same way as the traces of the WCDs. Supplement-
ing the RNN additionally with data from SSDs (see Fig. 3, marked with Phase-II) the prediction
quality of 'µ is improved even further. Therefore, on simulations the NN-based approaches benefit
from the access to structured information, as well as from more sophisticated sub-NN architectures
without having to fundamentally restructure the architecture used.

Using a different, more sophisticated architecture consisting of transformers [20] which pre-
dicts 'µ and -max simultaneously, the improvement can be quantified by comparing the standard
deviations of the residuals [19] which corresponds to a measure for the resolution. For the muon
number 'µ the resolution of the predictions improves significantly over the whole energy range
(see Fig. 4) for all primaries independently. Both the SSD and the WCD are particle detectors with
different responses to different particles of the shower cascade. The improved resolution indicates
that the simultaneous measurement of the SSD and WCD helps to disentangle the electromagnetic
and muonic components of air showers. This conclusion is supported since the prediction quality
especially improves for low zenith angles [19] where the planar design of the SSD reaches full effi-
ciency. Adding another detector has – most likely – less impact on the -max prediction, since -max

is a feature of the electromagnetic shower cascade that is encoded in the shower front and trigger
timing. Still, the resolution slightly improves overall for the test data set driven by the resolution of
He, O, and Fe.

³The relative muon number 'µ is computed by dividing the muon number #µ with the number of muons expected
from protons at the same zenith angle and shower energy.

⁴Time until a certain signal threshold is deposited.
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Figure 3: Linear correlation coefficient of NN predictions and MC value of 'µ (left) for different machine
learning-based methods (see Section 2.3) and classification accuracy for the same methods as function of
logarithmic Monte-Carlo energy. The more information of the footprint is used, the better the correlation and
classification becomes. Taken from [18].

Figure 4: Fraction of standard deviation for the difference of 'µ (left) and -max (right) predictions and
Monte-Carlo values as a function of energy for NN-based approaches using the combined information of the
WCD and SSD and using only the information of WCD. The straight lines are linear fits to the fractions of
using only the pure compositions of the different primaries. Taken from [19].

3. Conclusion

In this contribution, the current state of machine learning-based analyses at the Pierre Auger
Observatory was summarized, focusing on NNs that use SD information as inputs. It was shown
that neural networks are powerful tools to extract high-level shower observables and that NN can
even be used to probe the potential of newly deployed detectors, such as the SSD.

Although, the impact of systematic differences between measurements and simulations on NN-
based predictions is not yet fully understood, NN-based analyses show exceptional performance on
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simulations and promising results on measurements. Therefore, NN-based analyses are gradually
being integrated into the data analysis pipeline of the Pierre Auger Observatory supplementing
standard approaches and potentially replacing some parts of them in the near future.
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