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Ultra-high energy (UHE) photons above 1018 eV serve as valuable probes of fundamental physics.
While typically produced in interactions involving charged particles, they could also originate
from exotic sources such as annihilations of magnetically charged monopole-antimonopole pairs
or decays of highly accelerated monopoles (∼ 1021 eV). Detecting such photons would impose
constraints on monopole properties. Despite strong theoretical motivations and extensive experi-
mental searches, no monopoles have been observed to date.
A possible explanation beyond high monopole masses arises from Staruszkiewicz’s quantum
theory of infrared electromagnetic fields. His argument, rooted in the positivity of the Hilbert
space norm, suggests that isolated magnetic monopoles may not be physically realizable. If
correct, this would imply that while monopoles remain mathematically well-defined within field
theories, only magnetically neutral configurations could exist in nature.
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Magnetic monopoles have long been hypothesized as fundamental particles that could pro-
foundly influence ultra-high-energy (UHE) cosmic rays, potentially explaining energies beyond
1020 eV and yielding distinctive photon signatures. Although theories—from Dirac’s pointlike
charges to solitonic non-Abelian monopoles—predict them, no experimental detection exists. Re-
cent quantum arguments also question whether free monopoles can exist. For instance, Herdegen [1]
showed that excluding monopoles is crucial for consistent angular momentum in massive charged
scattering, while Staruszkiewicz’s quantum theory of electric charge and phase [2, 3] suggests
magnetic monopoles may violate Hilbert-space structure.

We now outline cosmic-ray phenomenology, UHE photon signatures, monopole models, and
arguments against their existence; see [4] for further detail and references.

1. UHECR signatures of Magnetic Monopoles

Protons above 5×1019 eV lose energy through interactions with background radiation, limiting
their range to a few megaparsecs. Heavier ions similarly attenuate, enforcing the GZK cutoff, so
cosmic rays above 1020 eV from tens of megaparsecs should be unobservable. This cutoff may also
reflect source limits, since no confirmed mechanism surpasses 1020 eV. If higher-energy events are
found, more exotic acceleration must be invoked.

Large-scale magnetic fields can produce the highest-energy cosmic rays. In second-order Fermi
acceleration, repeated scattering off magnetized plasma can raise energies to 𝐸𝐹 ≈ 𝑍𝛽𝑐𝑒𝐵𝐿 before
escape. Shock acceleration often reaches 1021 eV near pulsars. A magnetic charge would enhance
energy gain further.

In 1960, Porter [5] proposed that ∼ 10−14 of all primary cosmic rays might be monopoles.
Unlike Fermi processes, such monopoles could draw energy directly from magnetic fields, pos-
sibly forming in neutron-star interiors or emerging via Schwinger-like tunneling in intense fields.
’t Hooft–Polyakov monopoles demand even stronger fields. Heavy-ion collisions at RHIC and the
LHC reach 1018–1020 Gs, exceeding ∼ 1015 Gs in magnetars. Despite searches (MACRO, Baikal,
Amanda-II, RICE, SLIM, ANITA, IceCube, Pierre Auger), only upper bounds on fluxes exist.

Photon emission by magnetic monopoles is enhanced by ∼ 4692 (2) compared to a unit
electric charge, growing as 𝑛2 if the charge is 𝑛 times the minimum. This strong coupling boosts
ionizing power, aiding detection (e.g., MoEDAL at the LHC). Astrophysical monopoles can exceed
1021 eV, above the 1020 eV UHECR limit, largely independent of mass. A high-energy monopole
traversing matter may emit a few UHE photons, detectable above 1019 eV, and monopolium states
can annihilate into energetic photons.

Dirac showed [6] that a monopole of mass 𝑚 and charge 𝑔 obeys 𝑚 ¥𝑥𝜇=𝑔𝐺𝜇𝜈 ¤𝑥𝜈 , mirroring the
Lorentz force law for electric charges (here, 𝐺𝜇𝜈≡1

2𝜖
𝛼𝛽

𝜇𝜈 𝐹𝛼𝛽). With minimal losses, a magnetic
field accelerates a monopole like an electric field does a charge. For Dirac’s minimal charge 𝑔 = 𝑒

2𝛼
over distance 𝐿, the energy gain Δ𝐸 = 𝑒𝑐

2𝛼𝐵𝐿 is mass-independent, exceeding typical first-order
Fermi acceleration by ∼ 2𝛽𝛼: Δ𝐸≈ 𝐵𝐿

𝐵𝑜𝐿𝑜
· 2.054×1021 eV, 𝐵𝑜𝐿𝑜=1017 Gs · cm (corresponding to

3.241×104 µGs·pc or 6.685 × 103 Gs·AU). In pulsar magnetospheres (𝐵 ∼ 1012 Gs, 𝐿 ∼ 1 km),
Δ𝐸 ∼ 2×1021 eV matches the highest cosmic-ray energies. Extrapolating to larger scales (galaxies,
clusters) yields 1019–1024 eV accelerations, see table 1. Radiation mechanisms for UHE monopoles
mirror those of relativistic charges: a Lorentz-transformed field 𝛾𝑐𝐵 causes energy losses 1

2𝛼 ≈68
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acceleration medium magnetic field 𝐵 distance scale 𝐿 energy gain
interplanetary space 50 µGs 1 AU 1.5×1013 eV
Sun-spots 103 Gs 104 km 2.1×1016 eV
Galaxy: interstellar 2 µGs 100 pc 1.3×1019 eV
white dwarfs 5×106 Gs 104 km 1.0×1020 eV
radio-galaxy lobes 10 µGs 10 kpc 6.3×1021 eV
clusters of galaxies 1 µGs 100 kpc 6.3×1021 eV
active galactic nuclei 104 Gs 5 AU 1.5×1022 eV
pulsar magnetosphere 5×1012 Gs 10 km 1.0×1023 eV
intergalactic medium 10−2 µGs 3 Gpc 1.9×1024 eV

Table 1: Selected estimates of monopole energy gains in various magnetic environments.

times that of a charged particle. Monopole decay or annihilation can emit photons above 1021 eV.
Despite these channels, no monopoles have been directly detected. Their existence remains an open
question, constrained by high-energy observatories. For overviews of searches, see [7], and for
theoretical/experimental constraints, see [4, 8–10].

2. A magnetic monopole theory short revision

In classical Maxwell electrodynamics, monopoles are structurally absent. Still, minor quantum
topological modifications permit their introduction. Dirac’s monopole theory [11] starts with the
fact that a wave function’s phase is only fixed up to a constant, allowing shifts around closed
loops. He required such shifts to be universal, coupling them to the electromagnetic potential via
𝑒
ℏ𝑐

∫
𝐴𝜇 d𝑥𝜇. Non-integrable phase implies nonzero flux, signaling a monopole. For a Maxwell

field, any closed-surface flux vanishes. With a monopole, flux is nonzero, forcing 𝐴𝜇 to be singular.
Such singularities arise from 𝜅𝜇 = 𝜕𝜇𝜅, where 𝜅 is an indefinite phase. Dirac showed these
fields can be reinterpreted as potentials, validating monopoles. Because wave function phase is
unchanged by 2𝜋𝑛 shifts, charges must be quantized. For a monopole, the flux integral obeys
2𝜋

∑
𝑛𝑖 + 𝑒

ℏ𝑐
4𝜋Φ𝐵 = 0, leading to Dirac’s condition

𝑔𝑛=𝑛𝑔, 𝑔=
ℏ𝑐

2𝑒
, 𝑛=0,±1,±2, . . . . (1)

A Dirac string cancels the monopole’s outward flux and remains unobservable due to quantization.
Though 𝐴𝜇 is singular along a semi-infinite line, gauge choices merely relocate this line without
altering observables. Jackiw [12] introduced monopoles without a singular 𝐴𝜇, implying point-
like monopoles. Dirac’s formula implies monopole–photon coupling far exceeds electron–photon
coupling. The force between monopoles is(𝑔

𝑒

)2
=

( 𝑛

2𝛼

)2
∼ 4692𝑛2 (2)

stronger than the Coulomb force between electrons, causing vastly enhanced radiation.
Field-theoretic monopoles emerge in a unifying gauge group that breaks to 𝑈 (1). The 𝑆𝑈 (5)

GUT predicts topologically nontrivial, soliton-like solutions with quantized magnetic charge and no
Dirac string, spanning masses up to 1016 GeV. In 1974, ’t Hooft [13] and Polyakov [14] discovered
stable monopole solutions in an 𝑆𝑂 (3) Yang-Mills-Higgs system, avoiding Dirac’s string. The
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approach extends to any gauge field containing 𝑈 (1). Their 𝑄=1 solution is a stable soliton whose
asymptotic field matches a Dirac monopole. The coupling must satisfy 𝑔̃ = 𝑒

𝛼
, yielding a magnetic

charge 𝑔 = 𝑒
𝛼

, twice Dirac’s value.

3. Staruszkiewicz’s Argument Against Magnetic Monopoles

The no-monopole argument, first proposed in [3], emerges in the infrared limit, where charge
data is encoded in slowly decaying fields that lie outside the light cone. Spatial infinity thus
underpins charge quantization, as in Staruszkiewicz’s quantum theory of infrared electromagnetic
fields [2].

3.1 Electromagnetic Fields at Spatial Infinity

During scattering, a charge radiates a field akin to two Coulomb fields before and after scat-
tering—its zero-frequency part is universal, set by the initial and final four-velocities, and localized
outside the light cone.

All observed charged particles have nonzero mass, so currents lie inside the light cone, implying
the asymptotic field must be free and homogeneous of degree −2. One isolates this zero-frequency
component via the Gervais–Zwanziger limit [15], picking out 𝑟−1 terms in 𝐴𝜇 (𝑥) or 𝑟−2 in 𝐹𝜇𝜈 (𝑥).
Homogeneous fields decompose into electric e(𝑥) and magnetic m(𝑥), each solving free-wave
equations on a 2+1D de Sitter hyperboloid (representing the asymptotic structure of spatial infinity
in 3+1D Minkowski space):

𝑥𝜇𝐹𝜇𝛼 = 𝜕𝛼e(𝑥),
1
2
𝜖

𝜇𝜈

𝛼𝛽
𝑥𝛽𝐹𝜇𝜈 = 𝜕𝛼m(𝑥) (3)

(for a Coulomb field, e = 𝑒(𝑢𝑥)/
√︁
(𝑢𝑥)2 − (𝑥𝑥) (𝑢𝑢), m = 0). This division is Lorentz-invariant.

Spatial infinity is modeled by a unit de Sitter hyperboloid with the line element:

d𝑠2 = 𝑔𝑖 𝑗d𝜉𝑖d𝜉 𝑗 = d𝜏2 − cosh2 𝜏
(
d𝜃2 + sin2 𝜃 d𝜙2

)
.

Here, 𝜏 runs from −∞ to +∞, with 𝜃, 𝜙 on 𝑆2. This curved background provides a Cauchy surface
for infrared fields.

Berestetskii, Lifshitz, and Pitaevskii’s criterion ⟨ ®𝐸2⟩ ≫ ℏ𝑐/(𝑐Δ𝑡)4 [16] tests if an EM field is
classical. While static fields always appear classical, the zero-frequency field of a scattered charge
must be analyzed carefully. For a Coulomb field 𝑞/𝑟2, substituting 𝑐Δ𝑡 = 2𝑟 (from the opening of
the light cone) gives a classical threshold at 𝑛 ≫ 2.93, as noticed by Staruszkiewicz [17]. This
implies that the elementary charge 𝑒 is inherently quantum. If 𝛼 were significantly different, this
criterion would fail. This resolves why the proton field appears classical yet remains quantized.

3.2 Staruszkiewicz’s No-Monopole Argument

In quantum field theory, the structure of the Lagrangian plays a fundamental role in determining
the physical properties of a theory, including whether it leads to a well-defined Hilbert space with
a positive semi-definite scalar product. To place this in the context of infrared fields, consider a
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massless scalar field 𝜓(𝑥) propagating on 2+1D de Sitter spacetime. The relevant action is given
by [2]:

𝑆 =
𝜅

2

∫ √−𝑔𝑔𝑖 𝑗𝜕𝑖𝜓 𝜕 𝑗𝜓 d3𝑥, 𝜅 =
ℏ2𝑐

4𝜋𝑒2 .

The classical field 𝜓(𝑥) satisfies the wave equation 1√−𝑔𝜕𝑖
(√−𝑔𝑔𝑖 𝑗𝜕 𝑗𝜓

)
= 0 which can be solved by

means of separation of variables and represented as a linear combination of mode functions 𝑢𝑙𝑚(𝑥)
with some integration constants as coefficients. Correspondingly, the resulting real quantum field
operator Ψ(𝑥) is also expanded in a series mode functions 𝑢𝑙𝑚(𝑥):

Ψ(𝑥) =
∑︁
𝑙,𝑚

[
𝑎𝑙𝑚𝑢𝑙𝑚(𝑥) + 𝑎

†
𝑙𝑚
𝑢∗𝑙𝑚(𝑥)

]
, 𝑢𝑙𝑚(𝑥) = ℎ𝑙 (𝜏)𝑌𝑙𝑚(𝜃, 𝜙).

Here, 𝑌𝑙𝑚(𝜃, 𝜙) are spherical harmonics on 𝑆2, and ℎ𝑙 (𝜏) satisfy a Klein-Gordon-like equation with
a time-dependent mass term. The exact forms of ℎ𝑙 (𝜏)’s involving hypergeometric functions are
shown in [2]. For consistency with the classical theory, the annihilation and creation operators
𝑎𝑙𝑚 and 𝑎

†
𝑙𝑚

would normally satisfy the usual canonical commutation relations for a bosonic
field: [𝑎𝑙𝑚, 𝑎†𝑙′𝑚′] = 𝛿𝑙𝑙′𝛿𝑚𝑚′𝛾 for 𝑙, 𝑙′ ⩾ 0 (where 𝛾 is a possible normalization constant), with
all other commutators vanishing. However, there is an important subtlety with the 𝑙 = 0 sector
and the additive term, with important consequences for the stucture of quantum states (namely,
corresponding to quantum phase and charge operators), not discussed here, that must be considered
separately in the context of quantum theory of electric charge [2].

The canonical scalar product for quantum fields on curved spacetimes is given by the Klein-
Gordon inner product: ⟨𝑢, 𝑣⟩ = i

2

∫
Σ

√−𝑔(𝑢∗𝜕𝜇𝑣 − 𝑣𝜕𝜇𝑢
∗)𝑔𝜇𝜈𝜖𝜈𝛼𝛽d𝑥𝛼∧d𝑥𝛽 (reveling the charac-

terictic for the theory of ordinary differential equations antisymmetric Wrońskian form), where Σ is
a Cauchy surface. For our case, choosing Σ as a surface of constant 𝜏, the inner product simplifies
to:

⟨𝑢, 𝑣⟩ = i cosh2(𝜏)
∫
𝑆2

sin 𝜃d𝜃d𝜙 (𝑢∗𝜕𝜏𝑣 − 𝑣𝜕𝜏𝑢
∗). (4)

Such defined inner product is not guaranteed to be positive definite (it is at most semidefinite: e.g.,
for a real 𝑢, we have: 𝑢∗ = 𝑢, implying: ⟨𝑢, 𝑢⟩ = 0). In order to construct a proper Hilbert space, one
must restrict the solution space to a subspace with a well-defined positive norm. This is typically
done by considering only positive-frequency solutions when defining the quantum field operators.

Negative norm states are problematic because they lead to unphysical probabilities in quantum
mechanics. Specifically, i) the probability interpretation of the theory fails, as probabilities can
become negative or arbitrarily large; ii) the Hamiltonian is no longer bounded from below, making
the vacuum state unstable; and iii) unitarity, a fundamental requirement of quantum mechanics, is
lost. For these reasons, quantum field theories must be formulated to avoid ghost states, ensuring
that all physical states have positive semi-definite norms.

In de Sitter space, the key difference compared to Minkowski space is that the functions 𝑢𝑙𝑚
lie on a dynamically expanding background, so the metric itself is time-dependent. Because no
global timelike Killing vector exists in such an expanding geometry, there is no universal time
translation to define positive frequency. Each coordinate choice imposes its own notion of time
evolution, thus yielding different frequency splittings and vacua. De Sitter can indeed be covered by
multiple coordinate patches, each introducing a distinct candidate vacuum. Consequently, a clean
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Lorentz-invariant separation of positive- and negative-frequency modes is not possible, allowing
different definitions of the vacuum state [18].

Ensuring a well-defined Hilbert space requires careful selection of mode functions. Therefore,
further physical prescriptions are needed to single out a particular solution. Staruszkiewicz suggests
that a solution can be considered a positive-frequency solution if it corresponds to a positive-
frequency solution of Maxwell’s equations. In this case, the required normalized form of ℎ𝑙 for
positive-frequency solutions, given by 𝑢𝑙𝑚 = ℎ𝑙𝑌𝑙𝑚, can indeed be constructed [2] (the positive
frequency 𝑢𝑙𝑚 modes are normalized to 1 with respect to the norm defined in equation (4)).

Staruszkiewicz’s argument against the existence of magnetic monopoles arises in a similar math-
ematical context as described for scalar fields above. For general fields 𝐹𝜇𝜈 (𝑥) homogeneous of
degree −2, scalars e(𝑥) and m(𝑥) (homogeneous of degree zero) can be regarded as arbitrary func-
tions defined over the unit de Sitter hyperboloid. They are effectively functions of 𝜓, 𝜃 and 𝜙 only
(independent of the fourth radial coordinate 𝜒 enumerating de Sitter hyperboloids outside the light
cone). The action integral expressed in terms of such fields becomes a difference of two identical
integrals [2, 3] 1 −

∫
𝐹𝜇𝜈𝐹

𝜇𝜈d4𝑥=2
∫ d𝜒

𝜒

sin(𝜃 )
sech2 (𝜓) d𝜓d𝜃d𝜙

(
𝑔𝑖𝑘𝜕𝑖e𝜕𝑘e−𝑔𝑖𝑘𝜕𝑖m𝜕𝑘m

)
. Disregarding the

factor d𝜒/𝜒, both Lagrangian densities are identical to one for a free massless scalar field on the
2+1D de Sitter spacetime. The action integral for this system regarded as confined to the de Sitter
unit hyperboloid H1 can be defined to be

𝑆[e,m] = 𝐶

∫
H1

𝑔𝑖𝑘 (𝜕𝑖e𝜕𝑘e−𝜕𝑖m𝜕𝑘m) √−𝑔 d3𝜉. (5)

Here, 𝑔𝑖𝑘 is the metric tensor in arbitrary intrinsic coordinates 𝜉0, 𝜉1, 𝜉2 on H1; 𝐶 is a positive
dimensional constant introducing the correct absolute physical scale of the action integral. The
function e is called the electric part, while the function m is called the magnetic part of the field.
Both parts are dynamically independent and can be investigated separately [2]. They evolve as
massless scalars on de Sitter spacetime, satisfying the free wave equation.

The scalars e and m appear to be completely independent fields, Lorentz–invariantly separated
from each other. These fields satisfy the same wave equations as the scalar field 𝜓 discussed
above and are defined by the standard Lagrangian densities for the two real scalar fields 𝑒 and
𝑚: L𝑒 =

√−𝑔𝑔𝑖 𝑗𝜕𝑖𝑒𝜕 𝑗𝑒 and L𝑚 =
√−𝑔𝑔𝑖 𝑗𝜕𝑖𝑚𝜕 𝑗𝑚. As we have seen, upon quantization, each

Lagrangian leads to a well-defined Hilbert space with a positive semi-definite inner product, ensuring
physical consistency. Now, if we consider the sum of the two Lagrangians, L+ = L𝑒 + L𝑚, the
resulting theory describes two independent quantum fields, each contributing a positive semi-
definite inner product. This corresponds to a direct sum of two Hilbert spaces, each with standard
probabilistic interpretation, and with composite scalar product ⟨𝑒1, 𝑒2⟩ + ⟨𝑚1, 𝑚2⟩. However, the
situation drastically changes if we consider the difference: L− = L𝑒 − L𝑚. This negative sign tied
to 𝑚(𝜉) yields an inner product of the form ⟨𝑒1, 𝑒2⟩ − ⟨𝑚1, 𝑚2⟩. Here, the field 𝑒 still contributes to
a positive semidefinite norm, but the field 𝑚 now enters with the wrong sign in its kinetic term. This

1It is seen that 𝑔𝑖𝑘𝜕𝑖e𝜕𝑘e and 𝑔𝑖𝑘𝜕𝑖m𝜕𝑘m are both quadratic forms with signature (+,−,−); thus, their dif-
ference is a quadratic form with signature (+, +, +,−,−,−) the same as the signature of arbitrary Maxwell Field
𝐹2

01+𝐹
2
02+𝐹

2
03−𝐹

2
23−𝐹

2
31−𝐹

2
12 (in a given inertial frame, the latter form can be written as a difference ®𝐸. ®𝐸− ®𝐻. ®𝐻 with a

contribution from electric field ®𝐸 and from magnetic field ®𝐻).
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indicates the presence of a ghost field, which inevitably produces negative-norm states, violating
unitarity and its probabilistic interpretation. To avoid these ghost fields, quantum field theories
must ensure that all physical states possess positive semidefinite norms. Negative norm states are
problematic because they allow the appearance of negative or arbitrarily large probabilities, remove
the lower bound on the Hamiltonian (rendering the vacuum unstable), and destroy unitarity—a
cornerstone of any consistent quantum theory.

From the action integral (5), upon quantization, the electric component e yields a positive-
definite norm, while the magnetic component m generates negative-norm states, rendering the
quantum theory inconsistent. To maintain a valid Hilbert space, one must discard m, implying
magnetic monopoles, which generate such negative-norm contributions, cannot exist as isolated
entities. The remedy is to set m = 0, thereby removing the negative-norm states and ensuring a
positive-definite scalar product. This procedure preserves Lorentz invariance and unitarity without
necessitating arbitrary state selections.2 Retaining only e, although it may require careful tuning
of modes, need not produce negative-norm states. However, including m invariably introduces
negative norms, violating fundamental quantum-mechanical principles in de Sitter space. Because
the kinetic term for m is negative, it must be excluded (m = 0), ruling out magnetic monopoles—or
any freely propagating magnetic component—in the asymptotic Maxwell field. Even with a CP-
violating Θ term, the negative-sign piece persists [19], so m′ = 0 and free monopoles disappear.

4. Conclusion

While high-energy photons from monopole-antimonopole annihilation or accelerated monopoles
could constrain monopole properties, accelerator and cosmic-ray searches have revealed no evi-
dence. Beyond large predicted masses, deeper quantum arguments suggest a fundamental conflict
with quantum electrodynamics. In Staruszkiewicz’s infrared theory [2], maintaining a well-defined
action at spatial infinity eliminates the magnetic part of the zero-frequency field, forbidding free
magnetic charges. Related work indicates that including magnetic fields in the de Sitter infrared
regime leads to indefinite norms [1, 3], making free monopoles incompatible with a positive-definite
Hilbert space.
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