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We report on the cosmic ray mass composition measured by the Telescope Array Low-energy
Extension (TALE) hybrid detector. The TALE detector began operations in 2017 with 10 high-
elevation fluorescence telescopes and a surface detector (SD) array of 80 scintillation counters,
including 40 with 400 m spacing and 40 with 600 m spacing. In 2023, we constructed a new array
made up of 50 SDs with a spacing of 100 m to lower the energy threshold of hybrid mode down
to PeV range for the investigation of the cosmic ray mass composition around knee structure in
the spectrum. Here we will present an estimate of the performance of the hybrid mode which is a
combination of the new SD array and TALE-FD using a Monte Carlo simulation, and report the
first preliminary results of the mass composition measurement using the new hybrid detector.
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Cosmic ray composition in 3 PeV to 30 PeV measured with TALE hybrid detector Keitaro Fujita

1. Introduction

Cosmic rays in the PeV to EeV energy range play a key role in understanding their acceleration
and propagation mechanisms in our galaxy. This region includes the well-known "knee" [1] at a
few PeV, where the spectrum steepens, and the "second knee", marking further steepens. Precise
measurements of composition are critical for constraining theoretical models.
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Figure 1: TALE detector layout (SD: □, FD: •).
The configuration of the new SDs with a spacing
of 100 m is shown in the upper panel.

The Telescope Array Low-Energy Extension
(TALE) extends the capabilities of the Telescope Ar-
ray (TA) experiment, enabling observations of cos-
mic rays down to PeV energies. The hybrid observa-
tion mode, which combines the fluorescence detec-
tors (FD) and surface detectors (SD) array, provides
improved energy and 𝑋max reconstruction compared
to the monocular mode. Ten high-elevation tele-
scopes, covering a field of view of 31◦ to 59◦ in
elevation angle. Each telescope has 256-pixel photo-
multiplier tubes, operating with 8- bit 10 MHz FADC
readout [2]. Observations have started since 2013.
The SD array comprises 80 scintillation counters.
Each counter consists of two layers of scintillators
with an area of 3 m2. 40 counters are deployed in
the forward direction of the FD field of view with
a spacing of 400 m, while the remaining 40 coun-
ters are spaced at 600 m. This SD array activates an
air shower trigger when any four or more detectors
record signals equivalent to three or more particles
within a time window of 32 𝜇s. The array configuration is shown at the bottom of Figure 1. Ob-
servations began in 2018. In addition, a new dense array of 50 scintillation counters with 100 m
spacing was deployed between the original SD array and FD position as shown in the upper panel
of Figure 1 in October 2022, and began the observation in November 2023. For this new array,
we set the air shower trigger which activates when adjacent five or mode detectors record signals
equivalent to three or more particles within a time window of 3 𝜇s. This setup ensures reliable
detection of extensive air showers while minimizing false triggers from random background events.
The operation duty cycle of the new SD array exceeds 98% as shown in Figure 2a. The accumu-
lated number of recorded triggering events by the SD array had reached approximately ten million
just before the conference, as indicated by the solid line in Figure 2a. Also, 540 hours of hybrid
observation data had been accumulated by the end of June 2024 as shown in Figure 2b and is used
in this work.

2. Event Reconstruction

The event reconstruction is basically the same as our previous work in [4] except for one point.
In the previous hybrid geometry reconstruction, even when multiple SDs detected air shower signals,
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Figure 2: The operation status summary. Left: The histogram shows the efficiency defined as the number
of SD in operation over the maximum number of SD for every 10 minutes. Right: Accumulated hybrid
observation time is shown by the solid line. The gray histogram represents observation hours per day.

only the position and timing information from a single SD, combined with FD tube timings, were
used to determine the shower axis. However events with the new SD array have larger footprints
of air showers as shown in the left panel of Figure 3, so the hybrid geometry reconstruction has
been updated to constrain the shower core using lateral fits of the SD array signals. Specifically,
the chi-squared (𝜒2) value from the FD tube timings is combined with the 𝜒2 value derived from
the shower core determined by the SD lateral fit, and the total 𝜒2 is minimized in the reconstruction
process. This update allows the shower core to be determined with a resolution of 10 m, even for
shower energy as low as 1015.5 eV. The arrival direction is also determined with a precision of 0.5◦.
Consequently, the energy and 𝑋max values can be reconstructed with resolutions of < 10% and
< 25 g/cm2, respectively, as summarized in Table 1.

Table 1: Resolution achieved by the combination of TALE FD and new SD hybrid mode.

Parameter Resolution
𝑅𝑝 (Impact Parameter) 10 m

𝜓 (Angle) 0.5◦

𝑋max < 25 g/cm2

Energy < 10%

3. Data and Monte Carlo Comparisons

We run the Monte Carlo simulations to evaluate our detector performance and reconstruction
resolution. In this work, we generated proton and iron cosmic rays air showers using CORSIKA [5]
air shower simulation tool with the hadronic interaction model of QGSJetII-04 [6]. Equal numbers
of events were generated for each primary type. The generated MC events follow a broken power
law spectrum in which the spectrum index is -2.7 below 1015.6 eV and is -3.0 above the break
energy, where each parameter comes from recently reported by LHAASO collaboration [7]. All of
the calibration factors with time dependence are considered in the SD and FD detector simulations.
To ensure the quality of reconstructed events and to avoid potential 𝑋max biases and resolution
degradation, the following event selection criteria are applied:
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Result. 𝜽[deg] 𝝓[deg] Rp[km] 𝝍[deg] coreX[km] coreY[km] 𝑿𝐦𝐚𝐱[𝐠/𝐜𝐦𝟐] log(E/eV)
Hybrid 31.1 66.8 0.63 112.3 -6.99 18.89 586 16.04
SD 30.7 65.0 - - -7.07 18.91 - 16.01

TA Preliminary

Observed event, 20231215 02:20:36

Figure 3: Event example observed by the combination of the TALE FD and new SD array hybrid mode. The
triggered SDs are shown in the left panel. Marker radius is proportional to the signal size measured by the SD,
and color indicates trigger time. The arrow shows the reconstructed azimuthal angle of the shower direction,
and the crossed point corresponds to the reconstructed shower core position. The top-right panel shows the
shower track of this hybrid event as seen by the fluorescence telescopes. Marker radius indicates signal size,
and color indicates trigger time. The solid line is the shower-detector plane found by reconstruction. The
bottom-middle panel shows the result of hybrid geometry fit. The inverted triangles show the trigger time
and viewing angle of FD PMTs that observed the passage of the shower. The inverted triangles show the
same information for SDs. The reconstructed lateral distribution of this shower is shown in the bottom-right
panel. Reconstructed shower parameters obtained by hybrid mode and only by SD array [3] are summarized
in the bottom table.

• Successful reconstruction of shower geometry and profile.
• Observations made under good weather conditions.
• 𝑋max observed within the field of view of the FDs.
• Total number of photo-electrons exceeds 1000.
• Ratio of photo-electrons to the number of hit PMTs exceeds 50.
• FD event duration longer than 100 ns.
• Minimum viewing angle, defined as the angle between the shower axis and the pixel field of

view direction, exceeds 1.5◦.
• Distance between the reconstructed shower axis and the SD with the largest signal is less than

100 m.
• Number of PMTs at the edge of the FD field of view is fewer than five.
• The brightest PMT is not located at the edge of the FD field of view.

After the event selections have been applied to the experimental data, 8978 events remain within the
energy range of 1015.5 to 1016.4 eV. The results of the comparisons of experimental data and Monte
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Carlo events are displayed in Figure 4. The number of PMTs in shower track (Figure. 4a), the number
of photo-electrons (Figure. 4b), the impact parameter, 𝑅𝑝 (Figure. 4c), the shower inclination angle
in the SDP 𝜓 (Figure. 4d), 𝑠50 which is the energy estimator of SD reconstruction (see details in [3])
(Figure. 4e) and the number of SD in cluster coincided with space and timing are displayed. In the
comparisons, we split the dataset with reconstructed energy at 𝐸 = 1016 eV. All MC histograms are
normalized by the entries of experimental data. We found the data and MC histograms comparison
shows good agreement.
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(c) Shower impact parameter, 𝑅𝑝
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Figure 4: Data / MC comparison plots. From top left to right bottom, (a) the number of PMTs, (b) the
number of photo-electrons, (c) the impact parameter, 𝑅𝑝 [km], (d) the shower inclination angle in the shower
detector plane, 𝜓 [deg], (e) 𝑠50 [Mip/m2], and (f) the number of clustering SDs are shown, respectively.
Note that each parameter is divided by the energy at log(𝐸 /eV) = 16.0. The black points with error bars show
the data distribution, while the proton/iron MC are shown by the red/blue histograms. The MC distributions
have been normalized to the same number of entries as the experimental data.

4. 𝑋max Measurement

Using 540 hours of hybrid observation data, we measured the mean 𝑋max (⟨𝑋max⟩) as a function
of shower energy in the energy range from 1015.5 eV to 1016.4 eV. The preliminary result is shown
in Figure 5a, where the black points represent the observed ⟨𝑋max⟩. For comparison, the ⟨𝑋max⟩
for proton and iron primaries are also plotted. The observed elongation rate was found to be
𝐷10 = 15 ± 4 g/cm2/decade, which is significantly smaller than the simulated values of 𝐷10 =

53±2 g/cm2/decade for protons and 48±2 g/cm2/decade for iron primaries. In addition, we compare
this result with the previously reported in [4] using TALE SD + TALE FD hybrid observations
data, as shown in Figure 5b. The observed elongation rate for 1017 eV is consistent within statistical
uncertainties for both measurements. Combining the two sets of results, we conclude that the
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average mass of cosmic rays increases with energy in the range from 1015.5 eV to 1017 eV, followed
by a reversal, where the composition becomes lighter at higher energies. This behavior may reflect
a transition in the sources and propagation mechanisms of cosmic rays in these energy regimes.
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Figure 5: Preliminary results of ⟨𝑋max⟩ as a function of energy. 5a: ⟨𝑋max⟩ measurement by this work. For
the comparison, the ⟨𝑋max⟩ of proton/iron are displayed as well. 5b: Our previous ⟨𝑋max⟩ measurement [4]
in the energy range of 1016.5 eV to 1018.5 eV also shown for the comparison.

5. Conclusion

In this work, we presented the first preliminary results of the cosmic ray mass composition
measurement using the new hybrid mode of the TALE. This new hybrid mode, which consists
of a dense SD array with 100 m spacing and FD, enables precise reconstruction of air shower
properties, extending the sensitivity of TALE down to the PeV energy range. Through 540 hours
of hybrid observation, we measured the mean 𝑋max in the energy range from 1015.5 eV to 1016.4 eV
and obtained an elongation rate of 𝐷10 = 15 ± 4 g/cm2/decade. This result indicates the average
mass composition of cosmic rays becomes heavier with increasing energy. Combining this result
with previous observations using the TALE SD + TALE FD hybrid mode, we concluded that the
average mass increases with energy from 1015.5 eV to 1017 eV, followed by a reversal to lighter
compositions at higher energies. Future work will focus on increasing the observation time and
improving statistical accuracy, as well as exploring primary fractions using 𝑋max distributions done
by the Pierre Auger Observatory in higher energies [8].
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