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Accurate reconstruction of Ultra-High-Energy Cosmic Ray (UHECR) parameters is crucial for
understanding their origins and composition. We present a newly developed Deep Neural Network
(DNN) approach based on the AixNet architecture for reconstructing UHECR parameters from
Telescope Array surface detector (SD) data. This model reconstructs key parameters, including
energy, arrival direction, core position, 𝑋𝑚𝑎𝑥 , and primary mass, by analyzing time traces and
spatial correlations. Monte Carlo simulations for four mass groups (proton, helium, CNO, and iron)
demonstrate that the DNN improves the resolution of energy and core position while achieving
comparable resolution for arrival direction compared to standard reconstruction methods. We
expect that the DNN will achieve these improvements with looser data quality requirements,
potentially increasing the available event statistics. We provide expected resolution figures and
systematic studies from simulations and validate the DNN’s performance using hybrid data.
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1. Introduction

Despite growing observational data, the sources of UHECR remain unknown. The propagation
of UHECR is a complex interplay between energy losses, nuclei photodissociation, and deflection.
Its modeling requires accurate knowledge of the energies, particle types, and arrival directions
of detected particles. Due to low fluxes and extreme energies, UHECR are observed indirectly
through extensive air showers, making primary particle reconstruction a complex inverse problem.
Standard approaches rely on phenomenological models fitted to observations [1, 2], but they use
approximations, which may reduce accuracy. DNNs offer a powerful alternative, handling high-
dimensional data and capturing complex relationships between observables.

The Telescope Array (TA) located in the high desert of Utah, USA, is the largest UHECR
observatory in the Northern Hemisphere. It combines Fluorescence Detectors (FD) for observing
air shower longitudinal development and Surface Detectors (SD) for measuring lateral particle
distribution at the ground [3, 4]. FD provides more accurate primary particle reconstruction,
but operates only 10% of the time due to clear and moonless night requirements, limiting event
detection, especially at high energies. Standard SD reconstruction relies on the arrival times of the
shower front, determined by the leading edge of the pulse from each counter, and the total signal
charge, calculated by integrating the signal over time [1], without using the detailed time structure
of the signals. DNNs can incorporate time-resolved signals to improve accuracy and recover subtle
parameters like 𝑋max and mass [5–10], effectively extending FD-like capabilities beyond its limited
duty cycle.

In this contribution, we present a DNN-based reconstruction that utilizes time-resolved signals
in the form of two time traces recorded by the two scintillator layers of each surface detector. The
DNN is trained on Monte Carlo (MC) simulations for four types of primaries (p, He, N, Fe). It
demonstrates improved resolution for energy reconstruction, core position, and comparable perfor-
mance for directional reconstruction. Using TA hybrid data, we validate that the DNN performs well
on real data and provides results compatible with the established standard reconstruction approach.

2. Neural network architecture

We use a DNN that follows the AixNet architecture originally developed by the Auger Collab-
oration [7–10], with minor modifications to process TA data. The overall structure is illustrated in
Fig. 1. The network processes input data in several stages, beginning with the time traces encoder.
This encoder extracts features from two 128-length time traces recorded by each surface detector in
the 7×7 detector array. The encoder consists of three 3D convolutional layers, each followed by a
ReLU activation, with a kernel size of (7,1,1), stride of (4,1,1), and zero padding, reducing the time
dimension to one, which is then removed by reshaping. The channel dimensions change according
to each layer’s input and output settings.

The core of the network processes detector-level features, such as arrival times, total signals,
detector statuses, and x, y, z coordinates, which are combined into a single tensor with dimensions
(8,7,7) representing integral features. The output from the time traces encoder is concatenated with
this feature tensor along the feature dimension. The resulting tensor is then passed through the
spatial correlation encoder, consisting of multiple blocks of separable convolution layers. Sepa-
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Figure 1: Schematic representation of the neural network architecture. Residual connections and layer
transitions are highlighted with red arrows.

rable convolutions reduce parameters and computation compared to standard convolutions while
preserving spatial and cross-channel correlations. Each block uses two stacked 2D convolutional
layers. The first convolution processes each detector’s feature map separately with a (3,3) kernel and
(1,1) padding, preserving spatial dimensions. The second convolution operates along the feature
dimension. Both layers are followed by ReLU activations.

A residual connection is applied by concatenating the block’s output with its input, effectively
doubling the feature dimension. The residual connections significantly improve performance of the
DNN. This process is repeated for 7 blocks, except for the final one, where the residual connection
is omitted. The final output is passed directly to the dense output layer, which flattens the feature
representation and maps it to the 11-dimensional target vector through a linear transformation.

3. Input preprocessing
To ensure consistency and robustness of DNN training and inference, several preprocessing

steps are applied, including normalization, transformation, and masking. Arrival times are normal-
ized by subtracting the mean of active detectors and dividing by the standard deviation across all
events, with inactive detectors set to zero. Time traces are summed over 128 bins to get the total
signal, then transformed using log(1 + 𝑥) and scaled by a factor of 10. The total signal undergoes
the same log(1 + 𝑥) transformation and is normalized using a fixed mean and standard deviation
obtained from a Monte Carlo dataset, ensuring uniform normalization across datasets.

Spatial information is standardized by normalizing the detector coordinates so that the 7 × 7
tile fits within a square where 𝑥 and 𝑦 range from [−1, 1], achieved by dividing by 1200× 3 meters.
The 𝑧-coordinate is scaled by dividing by 1200× 3 meters as well. An additional input encodes the
status of each detector, assigning a value of 1 for active detectors and 0 for inactive or missing ones.
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Figure 2: Bias (left) and resolution (right) of DNN energy reconstruction for events that passed quality cuts
and simulated with QGSJetII-04 for different primary particles.

For training and inference, 7 × 7 tiles of detectors, centered on the detector with the strongest
total signal, are used. A larger 9 × 9 tile size was tested but did not improve accuracy. The
central detector often saturates, distorting the waveform and affecting measurements of the total
number of particles. Also, CORSIKA simulations use thinning, with subsequent dethinning causing
inaccuracies near the core. To mitigate this, the central detector in the 7× 7 tile is set to zero during
training and inference. While this slightly reduces reconstruction accuracy on Monte Carlo datasets,
it improves generalization to real Telescope Array data by making the total signal more consistent
across datasets.

4. Monte Carlo datasets
The DNN was trained and tested using Monte Carlo simulations generated with CORSIKA

7.3500 and the QGSJetII-04 hadronic interaction model. The dataset includes proton, helium,
nitrogen, and iron primaries with 0.5 million events per species. Air showers are simulated in 26
logarithmically spaced energy bins in the range from 1 EeV to 300 EeV, following an 𝐸−1 spectrum.
Each bin contains 1000 CORSIKA showers with arrival directions sampled isotropically for zenith
angles below 70 degrees. Showers are resampled 20 times by rotating them, rescaling their energy,
and using the TA simulation framework to model realistic detector response, including electronics,
detector status, and background effects [1, 11]. The test dataset contains another 0.5 million events
with the same characteristics as the training data. The results are presented for events that pass the
standard quality cuts for the analysis of the spectrum. [1, 11]. To assess the model’s robustness
across varying hadronic interactions, two additional datasets based on the QGSJetII-03 and Sibyll
2.3d hadronic interaction models for proton and iron primaries were used.

5. Energy reconstruction

The performance of DNN energy reconstruction is first evaluated on a test dataset with the
same energy spectrum, composition, and hadronic model QGSJetII-04 as for the training data. The
evaluation is based on the bias and resolution of the relative reconstruction error. Results are shown
for events that pass standard spectral quality cuts.
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Figure 3: Comparison of DNN energy reconstruction biases across different hadronic interaction models for
events that passed quality cuts.

The bias of DNN energy reconstruction is shown in the left panel of Fig. 2. Bias values vary
with the primary particle type and are generally centered around zero, with a slight tendency toward
negative values. The upward shift at low energies and the slight downward bending at the highest
energies are edge effects, as the DNN is trained within the 1–300 EeV range and does not predict
values outside this interval. Since the reconstruction bias depends on both the hadronic interaction
model and the primary mass, it should ultimately be corrected through calibration against hybrid
event data.

The energy resolution is shown in the right panel of Fig. 2. For protons, the resolution decreases
from 25% at low to 10% at high energies, while for iron, it improves from 23% to 7%, giving iron
a 2–3% better resolution overall. Other elements fall between these values, generally closer to
iron. The largest resolution difference is between protons and heavier nuclei, but the resolution’s
dependence on particle type is weaker than for the bias.

Fig. 3 shows the biases for proton and iron across different hadronic interaction models. The
DNN trained on QGSJetII-04 produces a negative bias when reconstructing proton and iron events
simulated with QGSJetII-03. The Sibyll 2.3d results are similar to QGSJetII-04 but with slightly
larger biases.

The left panel of Fig. 4 compares the energy reconstruction resolution of the DNN trained on
QGSJetII-04, evaluated on datasets generated with QGSJetII-03 and Sibyll 2.3d. The resolution
shows only a weak dependence on the interaction model, with a slight degradation for models not
used in training. This suggests that the DNN generalizes well across different hadronic interaction
models.

The right panel of Fig. 4 compares the energy reconstruction resolution of the DNN with the
standard method on a dataset generated with QGSJetII-03, ensuring a consistent comparison since
the standard method is tuned for this model. The resolution is evaluated across two energy ranges
reported by TA collaboration [1, 11]. The DNN improves resolution by approximately 30%. It
is a significant result, because resolution is generally more challenging to account for in energy
spectrum reconstruction than bias. The improved resolution directly enhances the precision of
energy measurements.
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Figure 4: Resolution of DNN energy reconstruction for events that passed quality cuts. Left: Comparison
of resolution across different hadronic interaction models. Right: Comparison of DNN and standard energy
reconstruction resolution for events simulated with QGSJetII-03.
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Figure 5: Angular resolution of DNN and stan-
dard reconstruction.
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Figure 6: Resolution of shower core position re-
construction for the DNN and standard methods.

6. Reconstruction of direction and core position

Fig. 5 shows the angular resolution of the directional reconstruction, defined as the 68th
percentile of the angular distance between the reconstructed and true directions. Both DNN and
standard reconstruction tend to have better resolution with increasing nuclear mass as heavier
particles produce a stronger signal. The DNN resolution is slightly worse typically by no more
than 0.2 degrees over most of the energy range. Fig. 6 presents the resolution of the reconstructed
shower core position, defined as the 68th percentile of the distance between the reconstructed and
true core locations. The resolution shows little to no dependence on the primary particle type for
both the DNN-based and standard reconstruction methods. The standard reconstruction achieves a
resolution between 100 and 150 meters, while the DNN improves this to 50 meters at high energies,
reducing the resolution by a factor of 1.5–2.

6



P
o
S
(
U
H
E
C
R
2
0
2
4
)
0
4
0

Evaluation of TA SD’s energy reconstruction using DNN and hybrid data Anton Prosekin

1 3 10 30 100 300
Ehybr [EeV]

1

3

10

30

100

300
E r

ec
o [

Ee
V]

Preliminary

DNN linear reg.
s = 1.12±0.01
Std
DNN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
ln (Ereco/Ehybr)

0

20

40

60

80

100

120

Nu
m

be
r o

f e
ve

nt
s

Preliminary DNN norm fit:
=0.16 ± 0.01
=0.26 ± 0.01

Std norm fit:
=-0.05 ± 0.01
=0.33 ± 0.01

DNN
Std

Figure 7: Left: Comparison of standard and DNN energy reconstruction on the TA hybrid events dataset.
Right: Histograms over ln(𝐸reco/𝐸hybr) and normal distribution fits to them. The DNN results are shown
before applying the scaling factor, while standard reconstruction results are shown with a scaling factor of
1/1.27 applied.

7. Validation on TA hybrid data

To evaluate the DNN energy reconstruction on real data, we compare it with the standard
method using hybrid data detected by both SD and FD. The hybrid dataset includes 3656 events
detected over 9 years from May 27, 2008 to November 28, 2017. The scatter plot of 1033 events
passed standard quality cuts in the left panel of Fig. 7 shows that the DNN reconstructs energy
with performance comparable to the standard method, validating its ability to handle real data. A
linear regression fit shows a bias of 1.12, so the calibration factor for DNN reconstructed energies
is 𝐸hybr = 𝐸DNN/1.12. For consistency, we assumed an energy-independent bias, allowing direct
comparison with standard reconstruction. The standard method’s calibration factor of 1/1.27 is
already applied in the figure. Note that DNN’s calibration factor is not universal, as different
models, even trained on the same dataset, may result in slightly different factors. Right panel of
Fig. 7 shows distributions of events around diagonal line with normal distribution fits. It is seen that
DNN gives resolution of 30% compared to standard reconstruction resolution of 39% (see formula
(5.17) in [1]).

8. Conclusion

We present a DNN approach for energy, direction, and core position reconstruction applied
to simulated SD, and energy reconstruction for real hybrid TA data. Using MC datasets, we
observe a 30% improvement in energy resolution, a factor of 1.5–2 improvement in core position
reconstruction, and performance in directional reconstruction comparable to the standard method.
DNN energy reconstruction is robust to changes in hadronic interaction models, with a maximal
bias difference of 7% between QGSJetII-03 and QGSJetII-04 and weak dependence for resolution.
DNN is validated on real hybrid TA data, demonstrating 23% of relative improvement in resolution.
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