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Working with the 𝑆-matrix formulation of thermal physics, I resum a series of diagrams that
contribute to the free energy of 𝜆𝜙4 theory in 3+1 dimensions. The diagrams correspond to tree
level amplitudes that have, at fixed order in 𝜆, the maximum number of singular propagators in the
forward limit. It was recently argued that this set of diagrams saturates the free energy of a certain
integrable 1+1 dimensional theory, and it might play a special role in thermal physics in general.
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Maximally forward-divergent diagrams in 𝜆𝜙4 thermal theory

1. Introduction

Dashen, Ma and Bernstein (DMB) instructed us on how to compute thermal physics quantities
— I will focus here on the free energy — with the sole knowledge of the scattering amplitudes
among the microscopic constituents of the system [1]. In particular, the DMB formula for the free
energy 𝐹 requires, as an input, 𝑆-matrix elements evaluated in the forward limit, that is of the form
𝑆𝛼𝛼 ≡ ⟨𝛼 |𝑆 |𝛼⟩, where 𝛼 is an asymptotic state and 𝑆 is the scattering operator.

Taking the forward limit generically means, with enough particles partaking the scattering,
encountering divergences of the form lim𝑝2→0(𝑝2 + 𝑖𝜖)−1, coming from propagators going on shell.
For definiteness, let us consider a renormalisable theory of scalars interacting through a quartic
coupling. For a 𝑛 → 𝑛 amplitude, at tree level, there is a maximum of 𝑛 − 2 propagators that can go
on shell in the forward limit. In this Proceeding, I will show how the contribution to the free energy
of these ‘maximally forward-divergent’ diagrams can be resummed into a compact formula. There
are at least three reasons why it makes sense to sum together these contributions.

1. First of all, a technical one. Once it is understood how to treat the dangerous propagators,
these singular contributions are probably the simplest to compute, as we will see.

2. Second, Ref. [2] strongly hinted at the fact that, for the integrable version of the long string
effective theory in 1+1 dimensions, an analogous set of diagrams gives the whole free energy
of the system (the free energy had previously been computed non-perturbatively with the
Thermodynamic Bethe Ansatz (TBA) [3]). From this observation, it could be argued that
these contributions are somehow special to thermal physics in general.

3. Finally, for 𝑛 > 3, after the singular propagators are cured, the contribution to the free energy
of the individual diagrams is divergent in the infrared (IR). Summing together all of them, or
a properly chosen subset thereof, gives a IR finite object.

The aim of these notes is to elaborate on the first and third point. The second point should be taken
as a deeper motivation to study this problem.

2. Evaluation of diagrams

The amplitudes we are going to consider have a rather simple interpretation: they correspond
to histories where a bunch of particles just proceeds straight; when two particles meet, they pay a
price quantified by 𝜆, but exchange no momentum. Throughout their history, particles are labelled
by the initial momenta ®𝑘1, . . . , ®𝑘𝑛. At tree level, to make a connected amplitude, 𝑛 − 1 interactions
are required, and no more, so 𝑇𝑛→𝑛 ∝ 𝜆𝑛−1.

A mathematical fact that we are going to use later on is that there is a one-to-one correspondence
between these histories and Cayley trees with 𝑛 vertices and 𝑛 − 1 ordered edges (a Cayley tree is
just a connected tree with labeled vertices). The graph is constructed as follows: (i) to each particle
there corresponds a vertex; (ii) to each interaction, say between 𝑖 and 𝑗 , there is an edge connecting
vertex 𝑖 with 𝑗 ; (iii) edges are ordered according to the the time ordering of the events ‘𝑖 meets 𝑗’.
For each Cayley graph there are (𝑛 − 1)! distinct orderings of edges. See Fig. 1.
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Figure 1: Left: example of maximally forward-divergent history with 𝑛 = 3. It is entirely specified in terms
of the time ordering of the interactions among the particles. Right: Cayley tree with ordered edges associated
to the history on the left. Nodes stand for particles, while edges represent their interaction.

Let us now move to the evaluation of amplitudes. A crucial point is to compute not the usual
matrix elements 𝑆𝛽𝛼, but instead 𝑆𝛽𝛼 (𝐸) ≡ 𝛿𝛼𝛽 − 2𝜋𝑖𝛿(𝐸 − 𝐸𝛽)𝑇𝛽𝛼 (𝐸), where the 𝐸-dependent
𝑇-matrix is defined via

𝑇𝛽𝛼 (𝐸) ≡ 𝑉𝛽𝛼 +
∫

d𝛾
𝑉𝛽𝛾𝑉𝛾𝛼

𝐸 − 𝐸𝛾 + 𝑖𝜖
+
∫

d𝛾d𝛾′
𝑉𝛽𝛾′𝑉𝛾′𝛾𝑉𝛾𝛼

(𝐸 − 𝐸𝛾 + 𝑖𝜖) (𝐸 − 𝐸 ′
𝛾 + 𝑖𝜖) + . . . (1)

When 𝐸 = 𝐸𝛼, Eq. (1) reduces to the Lippmann-Schwinger equation for 𝑇 , with 𝑉 = 𝐻 − 𝐻0

being the interaction Hamiltonian of the theory. For an operator 𝑂, we are using the notation
𝑂𝛽𝛼 ≡ ⟨𝛽 |𝑂 |𝛼⟩, while

∫
d𝛾 stands for a phase space integration over state 𝛾.

A key property of the special histories we consider is that they are completely captured by
contributions to Eq. (1) where the intermediate states 𝛾 are identical to 𝛼. To be more precise, this
condition defines what we are going to sum over. Since the amplitude is forward, 𝛽 ≡ 𝛼 too. We
can anticipate that 𝑇-matrix elements will take the form 𝑇𝛼𝛼 (𝐸) ∼ 𝜆𝑛−1(𝐸 − 𝐸𝛼 + 𝑖𝜖)2−𝑛 , where
𝜆 characterises the 2 → 2 forward scattering, and 𝑛 is the number of particles of state 𝛼. Notice
how the limit 𝐸 → 𝐸𝛼 is singular for 𝑛 > 2, due precisely to the fact that 𝛾 ≡ 𝛼 for all intermediate
states.

The first amplitude of the series is 2 → 2 and acts as a building block for all amplitudes with
𝑛 > 2. It comes from the first term of the expansion in (1), so it is independent of 𝐸 and reads

𝑇2→2 = ⟨1, 2|𝑉 |1, 2⟩ = (2𝜋)3𝛿 (3) (0) 𝜆 = 𝐿3 𝜆 , (2)

where the appearance of a volume factor 𝐿3 is due to the forward limit. When computing the free
energy with the DMB formula, this factor will take care of the extensivity of the thermodynamic
function. There is only one Cayley tree with ordered edges, and therefore only one history.

Moving to 𝑛 = 3, we need to consider the second term in the Lippmann-Schwinger expansion,
and compute

𝑇𝐺
3→3(𝐸) =

1
3!

3∏
𝑖=1

∫ d3𝑘 ′
𝑖

(2𝜋)3 2𝐸 ′
𝑖

⟨1, 2, 3|𝑉 |1′, 2′, 3′⟩⟨1′, 2′, 3′ |𝑉 |1, 2, 3⟩
𝐸 − (𝐸 ′

1 + 𝐸 ′
2 + 𝐸 ′

3) + 𝑖𝜖
. (3)

where the index 𝐺 (graph) means that we concentrate on only one Cayley tree with ordered edges,
and later on will count them. In particular, the history we compute is the one where ®𝑘1 meets ®𝑘2
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Maximally forward-divergent diagrams in 𝜆𝜙4 thermal theory

first and then ®𝑘3, as depicted in Fig. 1. We get

𝑇𝐺
3→3(𝐸) =

3∏
𝑖=1

∫ d3𝑘 ′
𝑖

(2𝜋)32𝐸 ′
𝑖

⟨3|3′⟩⟨2′ |2⟩ ⟨1, 2|𝑉 |1
′, 2′⟩⟨1′, 3′ |𝑉 |1, 3⟩

𝐸 − (𝐸 ′
1 + 𝐸 ′

2 + 𝐸 ′
3) + 𝑖𝜖

= 𝐿3
∫ d3𝑘 ′1

(2𝜋)32𝐸 ′
1

𝜆2(2𝜋)3𝛿 (3) ( ®𝑘 ′1 − ®𝑘1)
𝐸 − (𝐸1 + 𝐸2 + 𝐸3) + 𝑖𝜖

= 𝐿3 𝜆2

2𝐸1

1
𝐸 − (𝐸1 + 𝐸2 + 𝐸3) + 𝑖𝜖

. (4)

The first equality reflects Fig. 1, with particles 3 and 2 travelling freely in the first and second half
of their history, respectively. The 1/3! that comes with the measure is completely reabsorbed by
the permutations among the internal particles 1′, 2′, 3′, which give an identical yield. The 2 → 2
amplitudes give two factors of (2𝜋)3𝛿 (3) ( ®𝑘1− ®𝑘 ′1) (times 𝜆), and one them is interpreted as a volume
factor. The end result is pretty simple. Apart from expected factors, there is a (2𝐸1)−1 that singles
out particle 1, which is the one that would have a singular propagator.

Generalising to an arbitrary history is straightforward. Given the associated Cayley tree, we
can associate to it the list of ‘valences’ {𝑑1, . . . , 𝑑𝑛}, i.e. the number of edges emanating from each
vertex. The amplitude associated to that history is

𝑇
{𝑑1,...,𝑑𝑛 }
𝛼𝛼 (𝐸) = 𝐿3𝜆𝑛−1

(
1

𝐸 − 𝐸𝛼 + 𝑖𝜖

)𝑛−2 𝑛∏
𝑖=1

(
1

2𝐸𝑖

)𝑑𝑖−1
. (5)

3. Contribution to the free energy

The DMB formula expresses the free energy of a system as

𝐹 = 𝐹0 −
1

2𝜋𝑖

∫
d𝐸𝑒−𝛽𝐸Tr𝑐 ln 𝑆(𝐸) , (6)

where 𝐹0 is the free theory contribution, and ln 𝑆(𝐸) = −∑∞
𝑘=1

(
2𝜋𝑖𝛿(𝐸 −𝐻0)𝑇 (𝐸)

) 𝑘/𝑘 is defined
via its Taylor expansion about the identity. One needs to take the trace of the operator ln 𝑆(𝐸) in
the Hilbert space of the theory, keeping only those contributions that are connected after taking the
trace, i.e. when the initial and final states are identified. This condition allows for histories that are
not connected in the usual sense of amplitudes [2].

Using Eq. (6), the goal is now to evaluate the contribution of a history with given {𝑑1, . . . , 𝑑𝑛}.
Expanding (6), we get

𝐹 {𝑑1,...,𝑑𝑛 } =

∫
d𝛼

∫
d𝐸𝑒−𝛽𝐸𝛿(𝐸 − 𝐸𝛼)𝑇 {𝑑1,...,𝑑𝑛 }

𝛼𝛼 (𝐸) + . . . , (7)

with
∫

d𝛼 the phase space integral over the 𝑛-particle initial (and final) state. The ellipses in (7)
stand for a series of contributions that we always consider together with𝑇 {𝑑1,...,𝑑𝑛 }

𝛼𝛼 , when evaluating
the free energy. They are of two kinds.
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Maximally forward-divergent diagrams in 𝜆𝜙4 thermal theory

1. On one side we have contributions that have the same exact form as 𝑇 {𝑑1,...,𝑑𝑛 }
𝛼𝛼 , except for

having factors of 2𝜋𝑖𝛿(𝐸−𝐸𝛼) instead of (𝐸−𝐸𝛼+𝑖𝜖)−1. These come from the expansion of
the logarithm in (6). For example, to the process in Fig. 1 is associated another contribution

1
2
× 𝐿3 𝜆2

2𝐸1
2𝜋𝑖 𝛿

(
𝐸 − (𝐸1 + 𝐸2 + 𝐸3)

)
, (8)

where the 1/2 in front comes from the expansion of ln 𝑆(𝐸). For 𝑛 > 3 there are also mixed
terms, with a factor of

(
2𝜋𝑖𝛿(𝐸 − 𝐸𝛼)

) 𝑘−1(𝐸 − 𝐸𝛼 + 𝑖𝜖)𝑛−𝑘−1 and coefficients dictated by
the logarithm expansion, times 𝜆𝑛−1 and a product of (2𝐸𝑖)1−𝑑𝑖 .

2. As mentioned before, there are disconnected histories that become connected once initial
and final states are identified. Together with 𝑇

{𝑑1,...,𝑑𝑛 }
𝛼𝛼 we include also all histories with an

arbitrary number of freely propagating particles, provided their lines become all topologically
connected — together and with the interacting cluster —, once we do the trace identification.
This can be seen in many ways: either as the addition of windings or as the inclusion of
exchange effects of identical particles.

Once we put everything together (see [2] for all the algebraic details that, for reasons of space,
cannot be discussed here), we find

𝐹 {𝑑1,...,𝑑𝑛 } = 𝐿3 𝜆𝑛−1

(𝑛 − 1)!𝑛!

𝑛∏
𝑖=1

∫
d3𝑘𝑖

(2𝜋)3 𝑛
(𝑑𝑖−1)
𝐵

(𝐸𝑖)
(

1
2𝐸𝑖

)𝑑𝑖
. (9)

where 𝑛𝐵 (𝐸) = (𝑒𝛽𝐸 −1)−1 is the Bose-Einstein density, and 𝑛
(𝑚)
𝐵

is its 𝑚th derivative with respect
to energy. Eq. (9) gives the contribution to the free energy of one given history, included the
associated higher orders of ln 𝑆(𝐸) and windings [2]. It is important to notice that, to a given
{𝑑1, . . . , 𝑑𝑛}, there correspond many histories (however the yield to the free energy only depends
on the list of valences of the Cayley tree associated to that history). In particular, it is immediate to
see that the time ordering of the interaction events is immaterial for (9), so the (𝑛 − 1)! always goes
away.

We can express the contribution to the free energy of the whole set of maximally forward-
divergent diagrams as

𝐹 = 𝐿3
∞∑︁
𝑛=1

𝜆𝑛−1

𝑛!

∑︁
{𝑑1,...,𝑑𝑛 }

𝑁{𝑑1,...,𝑑𝑛 }

𝑛∏
𝑖=1

∫
d3𝑘𝑖

(2𝜋)3 𝑛
(𝑑𝑖−1)
𝐵

(𝐸𝑖)
(

1
2𝐸𝑖

)𝑑𝑖
, (10)

where 𝑁{𝑑1,...,𝑑𝑛 } is the number of distinct Cayley trees that have the same list of valences. To give
a few examples, for 𝑛 = 2 there is only one tree, with list {1, 1}; for 𝑛 = 3 there are 3 trees with
valences {2, 1, 1}; at 𝑛 = 4 there are 4 graphs with {3, 1, 1, 1} valences and 12 with {2, 2, 1, 1}.
Starting from 𝑛 = 6, the list of valences does not uniquely determine the topology of the tree;
however, for the sake of (10), the different topologies have to be counted together. Notice that (10)
includes also the free theory contribution, corresponding to 𝑛 = 1, a single particle with valence
list {0}, and taking 𝑛

(−1)
𝐵

(𝐸) = 𝛽−1 ln(1 − 𝑒−𝛽𝐸).
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4. Resummation with recursive expression

The structure of (10) hints at a nested structure similar to the TBA equations [2, 3]. The fact
that histories are counted by Cayley trees also points to something like that. After inspection of the
equation, inspired by the TBA equations, we consider

𝑓 = 𝐿3𝛽−1
∫

d3𝑘

(2𝜋)3 ln
(
1 − 𝑒−𝛽𝜀 ®𝑘

)
, (11)

𝜀 ®𝑘 = 𝐸 ®𝑘 +
𝜆

2𝐸 ®𝑘

∫
d3𝑝

(2𝜋)32𝐸 ®𝑝
𝑛𝐵 (𝜀 ®𝑝) . (12)

The second equation is recursive, and can be expanded order by order in 𝜆. At every step, one
can go to higher orders in the Taylor expansion, or deeper in the recursion. Once the expansion
of 𝜀 ®𝑘 is put into the equation for 𝑓 , we get a series of terms with precisely the same form as in
Eq. (10). However, if 𝐹, as computed before and given by (10), is expressed as 𝐹 =

∑∞
𝑛=1

𝜆𝑛−1

𝑛! 𝐹𝑛−1

(the index 𝐹𝑛−1 is chosen in a way that 𝐹0 gives the free energy of the free theory), we find that
𝑓 =

∑∞
𝑛=1

𝜆𝑛−1

(𝑛−1)!𝐹𝑛−1 . This means that 𝑓 does not give the free energy, but it is close enough so we
can reconstruct it. In fact we have 𝑓 = 𝜕

𝜕𝜆
(𝜆𝐹), or

𝐹 =
1
𝜆

∫ 𝜆

0
d𝜆′ 𝑓 (𝜆′) . (13)

Remarkably, Eq. (12) can be solved analytically. The reason is that, for a given 𝜆, the d3𝑝 integral is
just a number 𝑐(𝜆), times 𝛽−2 to set dimensions.1 Therefore it must be 𝜀 ®𝑘 = 𝐸 ®𝑘 + 𝜆𝑐(𝜆)/(2𝛽2𝐸 ®𝑘),
with 𝑐(𝜆) fixed by the consistency condition

𝑐(𝜆) = 1
4𝜋2

∫ ∞

0
d𝑥

𝑥

𝑒𝑥+
𝜆𝑐 (𝜆)

2𝑥 − 1
. (14)

This equation can be solved numerically to arbitrary precision. For consistency with the free theory
limit, it must satisfy lim𝜆→0 𝑐(𝜆) = 1/24. After solving for 𝑐(𝜆) in an interval [0, 𝜆∗], the free
energy can then be obtained by integrating

𝐹 (𝜆∗) =
1

2𝜋2 𝐿
3𝛽−4 1

𝜆∗

∫ 𝜆∗

0
d𝜆

∫ ∞

0
d𝑥 𝑥2 ln

(
1 − 𝑒−

(
𝑥+ 𝜆𝑐 (𝜆)

2𝑥

) )
. (15)

Eq. (15), together with (14), provides an explicit integral for the series in Eq. (10), which was
derived diagrammatically. Remarkably, it is IR finite. At small coupling, for momenta of order
𝑘 ∼ 𝛽−1

√︁
𝜆/48, the two terms at the exponent become comparable. This is the regime that is usually

characterised by the Debye mass.

1More in general, it can be argued that (12) is a special case of

𝜀 ®𝑘 = 𝐸 ®𝑘 −
1

2𝐸 ®𝑘

∫
d3𝑝

(2𝜋)32𝐸 ®𝑝
𝑛𝐵 (𝜀 ®𝑝)𝑀

(®𝑘, ®𝑝) ,
with 𝑀

(®𝑘, ®𝑝) the relevant 2 → 2 scattering amplitude in the forward limit (cf. with [4]). If 𝑀 depends on the kinematics,
the d3𝑝 integral is a function 𝑐 ®𝑘 (𝜆) and the solution of the recursive equation becomes more challenging.
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5. Conclusions

I have studied, within the DMB formalism, an infinite set of thermal diagrams in 𝜆𝜙4 theory.
They are characterised, at given order in 𝜆, by having the maximal number of singular propagators
in the forward limit, and their evaluation only requires knowledge of the 2 → 2 forward amplitude.
Individually, for 𝑛 > 2, they are IR divergent.

It is possible to give a closed expression for the sum of these diagrams, Eq. (15), which is the
main result presented here.

The following questions are left open for future work. First of all, the mathematical structure
of (11) and (12) definitely requires further scrutiny. Second, the criterion followed here for resum-
ming thermal diagrams is not obviously equivalent to other, previously considered IR safe sums.
Therefore, a comparison with previous work on the topic is necessary. Finally, and related to this,
an obvious question is how to generalise these results to other theories, and specifically to QCD. It
is known that the perturbative series of thermal QCD is not well behaved. The scheme presented
here might provide a fresh look into an interesting problem like the stabilisation of the perturbative
series for, say, the pressure 𝑝(𝑇) of the quark-gluon plasma.
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