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The usual approach to the computation of cosmological phase transitions (PT) in thermal field
theory is through the construction of a dimensionally reduced effective field theory (3D EFT).
The need for robust theoretical predictions of the gravitational wave (GW) spectra sourced by
a first-order PT in the early Universe has recently pushed the construction of these 3D EFTs to
unprecedented levels of precision in loops. However, as far as the authors know, the contributions
from higher-dimensional effective operators that arise at the same order have generally been
neglected in the literature. Here, we perform a quantitative analysis of the impact of effective
interactions on the determination of PT parameters, and we develop a framework to consistently
compute them. We find that they allow for strong PTs in a wider region of parameter space, and
that both the peak energy density and frequency of the resulting GW power spectrum can change

by more than one order of magnitude when they are included.
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1. Introduction

This text provides a summary of the work presented in [1]. There, we explore the impact of
higher-order effective operators in the study of phase transitions (PTs) within the framework of
dimensional reduction.

In a quantum field theory (QFT), the existence of two non-degenerate minima in the scalar
potential can lead to a phase transition (PT) where the relevant scalar field changes its vacuum
expectation value (VEV). In the imaginary-time or Matsubara formalism [2] one can describe such
PTs when they are induced by thermal fluctuations. In this framework, time is compactified and
fields are split in an infinite tower of static Fourier modes residing in 3-dimensional Euclidean space
and with masses nT, where T is the temperature of the bath.

Within the high-temperature regime, where 7" is much larger than the zero-temperature mass
scales of the fields, there appears a hierarchy of scales, and thus a perturbative treatment becomes
possible only through the use of effective field theories (EFT). Indeed, one can build a dimensionally-
reduced, Euclidean 3D EFT where the heavy thermal modes are integrated out and only the zeroth
mode of bosonic fields are responsible for the PT (see [3] for further details and [4-6] for some
recent applications).

In the construction of 3D EFTs, most works claim that higher-dimensional effective operators
are irrelevant for PT computations based on naive estimates. In our work we address these claims
by studying a simple toy scalar model where we determine whether these effective operators can
be safely neglected in strong PTs. Since we deal with higher-order derivative interactions, we
furthermore develop a robust method to compute the bounce solution [7] perturbatively for effective
operators with an arbitrary number of field and derivative insertions.

2. Theoretical setup

We consider a toy model consisting of a real scalar ¢ and a massless fermion ¢ with Lagrangian
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In thermal equilibrium, this theory reduces to a Euclidean 3D theory with infinite thermal modes
for ¢ and ¢. In the high temperature limit, every mode acquires a large mass and can be integrated
out, except for the zeroth mode of ¢, which we will refer to as ¢.

The most general Lagrangian in the 3D EFT up to order O(g®) and adopting the standard power
counting [3] is:

1 1
L3 = §K3(3<P)2 + §m§902 +K39° + 39"

+ @619 + B610700* ¢ + Berg 0%
+ @319 + 520700, 00" 0” ¢ + B31900°p + Bog’ 0@ + B30 00 + Prag’ 0%
. )

Up to this order in our power counting, only operators up to mass dimension 8 (in a 4D
space-time) are generated. Going beyond dimension 6 does not only allow us to explore more
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accurately the parameter space, but, most importantly, it gives us control over the validity of the
EFT expansion. Indeed, our 3D EFT will we valid as long as effects triggered by the dimension-8
interactions are significantly smaller than those coming from dimension 6.

Our matching results are given in Eqgs. (3)-(6) below, where we include only the dominant part
of the one-loop contributions.
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3. Phase-transition parameters

During a first-order phase transition (FOPT), the scalar field spontaneously changes its VEV
in expanding O (3)-symmetric patches of space called bubbles. The PT dynamics can be described
by four main physical parameters: the nucleation temperature (7), the latent heat or strength of the
PT (a), the inverse duration time of the PT (B/H..) and the terminal bubble wall velocity (v, ).

These parameters can be determined (up to quantum corrections of the scalar zeroth mode)
by the effective action in the 3D EFT, S3[¢], evaluated at a classical solution of its equations of
motion (EOM), ¢, called bounce [7]. The bounce is an inhomogeneous static field configuration
that approximately interpolates between the two minima of the potential. Following the definitions
in [8—11] we have closed expressions for the relevant PT parameters:
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where in the second line p, = g(T)n?T*/30 is the energy density of the radiation plasma, and in
the last line v is the Jouguet velocity, defined as
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The proof of existence of the bounce solution for an action with a kinetic term and an arbitrary
potential was provided by Coleman in [7]. This solution in spherical coordinates is given by the
differential equation

Br)+ 29() = V(o) (12

with boundary conditions ¢(0) = 0 and lim, . ¢(r) = ¢ (hereafter we will choose ¢r = 0).
However, no such proof has been given for a general action with higher-order derivative terms, and
the dedicated tools for bounce computations (e.g. [12]) do not implement this kind of interactions.
To overcome this issue, we developed a consistent way to compute the bounce solution pertur-
batively for a general effective action S3. Being € the perturbative parameter and expanding

Y = <p£0) + egog ) 4+ 6290(2) -, S3= S;O) + eSgl) + ezSéz) +oeee, (13)

we find that 905.0) corresponds to the usual bounce solution of § éo) (Eq. (12)), and that the next order
in the expansion of ¢, is given by the differential equation
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Similar relations can be found at each order in €, and they were included, along with their derivation,
in the appendix of the original text [1].

Our approach has several advantages over dealing directly with the Euler-Lagrange EOM
obtained from the general action S3. First, proceeding this way we can keep track of the exact
contribution at each order in € in our EFT expansion. This is a key point to test the validity of
the EFT expansion in the results, by assuring that dimension-8 contributions are suppressed with
respect to dimension-6 ones. Second, solving the differential equation arising from the Euler-
Lagrange relations by brute force can easily turn very cumbersome and unmanageable, depending
on the nature and the number of higher-order derivative terms. Finally, thanks to the perturbative
expansion, the PT parameters are computed in an invariant way under field-redefinitions, which
serves as a cross-check of our calculations. For the latter to be true, it is necessary to evaluate
S3[ec] and V3(¢7) in a perturbative way as well:
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4. Results

Using the formalism presented in the previous section, we study the effects of higher-dimensional
operators in the Lagrangian in Eq. (2). In particular, we focus on their impact within the region
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Figure 1: Plots comparing PT parameters with and without effective operators (EO). We rep-

resent two different regions, with parameters (m*,k,A)4 = (20000 GeV?, —-40 GeV,0.01) and
(m?, k,D)p = (31643.5 GeV?, =71.1 GeV, 0.045), and varying g. The vertical lines represent gmax, where
lies the limit of validity of EFT expansion, defined as the value of g such that V3(2) (¢(TO))/V3(1) (ga(TO)) ~0.5.

of the parameter space where a strong PT takes place (we will say a PT is strong if @ > 0.1). To
restrict such a space we make use of the scan over («, m% k3, A3) carried out in Ref. [13]. We take
those points where the PT is strong and where, in addition, m/(nT.) < 1,«/(nT,) < 1, ensuring
the validity of the EFT expansion. The value of m?, k and A can obtained straightforwardly from
Eq. (3) for a given g, which we explore in the range 0 < g < 2.

Now, we plug each of these values into the Lagrangian in Eq. (2), compute the bounce ¢, from
(14) and (15), and obtain values for T, @ and 8/ H.. In Fig. 1 we plot these magnitudes as functions
of g, both taking and not taking into account effective operators, for two representative points of
the (m?, k, 1) parameter space. We see how the range of values of g for which the FOPT occurs
is larger when effective interactions are included, also yielding larger values values of @. This is
because in these points, effective interactions tend to decrease the value of the action noticeably,
thus allowing for the nucleation criterion S3[¢.] ~ 100 to be satisfied for a wider range of values
of g. With this, it becomes apparent that the inclusion of effective interactions can turn crucial in
the predictions of PT parameters, while within the regime of validity of the EFT expansion.

Another important aspect of thermally-induced FOPTs is the production of gravitational waves
(GW). The nucleation of bubbles of vacuum energy, their expansion and eventual collision sources
a stochastic GW background [10]. In Fig. 2 we show the predicted GW power spectra for the same



Higher order corrections in dimensional reduction Javier Lopez Miras

Without EO (1 € [A/2,2A]) Without EO (1 € [A/2,1.1A])
With EO (i € [A/2.2A]) With EO (i € [A/2,24])

05 104 108 102 107! 107 105 100 108 102 107 107

[ [Hz| f 1]

Figure 2: Sound wave GW power spectra for regions A and B computed with and without effective operators
(EO). The bands represent the uncertainty ensuing from running the matching scale p in the range [0.5A, 2A].

two regions as before (with g4 = 0.73 and gg = 0.95), computed from the dominant sound wave
contribution for a given frequency f [14] along with their scale dependence. From these plots we
learn that effective interactions can also change by orders of magnitude the power spectra of GW,
whether in terms of the peak energy density or in the value of the peak frequency.

5. Conclusions

We have computed the matching to a full basis of higher-order effective operators in the
dimensional reduction of a toy model with a real scalar and a fermion, and quantified its impact on
the dynamics of strong FOPTs. We have found that the presence of such operators does not only
allow for FOPTs at higher values of the Yukawa coupling, but also that it can substantially change
the prediction of the relevant PT parameters T, «, 8/H. and v,,. These corrections are seen to
consequently modify the peak energy density and frequency of the GW power spectra by orders of
magnitude.

Our work highlights the importance of EFT effects in strong FOPT studies. To isolate these
effects, we omitted higher-loop corrections in matching and in the effective potential. Future
directions could seek the incorporation of these effects, the inclusion of quantum corrections in the
effective action or the application of the techniques herein developed to other physically relevant
models, as the SMEFT.
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