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1. Introduction
A better understanding of different open fundamental questions often involves new particles.

Knowing their masses is a priority. As the decades-long history of the Higgs boson shows, short of
the experimental grail of discovery [1] or indirect hints [2], a variety of theoretical arguments can
be put forward to bring light on this respect [3]. An example of them is the use of perturbativity
requirements in the classical works of B. Lee, Quigg and Thacker [4] (see also [5]) to obtain
bounds on the Higgs mass. An important implication of perturbativity requirements on extended
scalar sectors featuring spontaneous symmetry breaking (SSB), is the existence of a Higgs-like
state whose mass cannot be (much) larger than the electroweak scale, as discussed in [6]. Two
Higgs doublets models (2HDMs) were proposed by T.D. Lee [7], with the appealing possibility
of a spontaneous origin of CP violation, that is, having a CP-invariant Lagrangian together with a
CP-non-invariant vacuum; we simply refer to them as real 2HDMs with spontaneous CP violation
(SCPV). Besides the Higgs-like state, perturbativity-based bounds on the masses of the additional
scalars have attracted attention within 2HDMs endowed with some symmetry [8], typically a Z2.
Complementarily, in multi-Higgs models [9], the analysis of scenarios with new heavy scalars, i.e.
scalars with masses ≫ 𝑣 , was addressed generically in [10], and recently in [11] in connection with
symmetries. Concerning real 2HDMs with SCPV, it was realized in [12], and analyzed in detail in
[13], that those perturbativity-based bounds on the masses apply to all the new scalars in the model,
one charged and two neutral ones, in addition to the neutral Higgs-like. With SSB, there are two
types of mass terms in 2HDMs, either dimensionful quadratic couplings or dimensionless quartic
couplings × (vevs)2. If the quartic couplings are limited by perturbativity requirements, masses
(much) larger than 𝑣 can only arise through large quadratic couplings. The crucial particularity of
the real 2HDM with SCPV is that there are only 3 quadratic couplings, which is also the number of
stationarity conditions imposed on the scalar potential so that the vacuum is an extremum. These
stationarity conditions can then be used to trade all 3 quadratic couplings for quartic couplings
× (vevs)2. Consequently, all mass terms are bounded through perturbativity requirements on the
quartic couplings. This means that rather than the generic expectation of having at least one
light scalar –the Higgs-like one–, perturbativity requirements bound the whole spectrum. Then, if
instead of a real 2HDM with SCPV, one considers a real 𝑛HDM with SCPV, is there something
similar at work? The number of quadratic couplings scales with 𝑛2 while the number of stationarity
conditions only scales with 𝑛. For 𝑛 > 2, free quadratic couplings are necessarily present in the
scalar potential. Does this imply that all the masses of the new scalars can be be much larger than
the electroweak scale? The central result of this work [14] is that the answer to this question is in
the negative: for all 𝑛, the spectrum necessarily includes one charged and two neutral scalars (in
addition to the neutral Higgs-like) that must be light, that is, whose masses cannot be much larger
than the electroweak scale when perturbativity requirements are imposed on the quartic couplings.

2. Real 𝑛HDM with SCPV

For 𝑛 Higgs doublets Φ𝑎, 𝑎 = 1, . . . , 𝑛, the most general scalar potential invariant under the
CP transformation Φ𝑎 ↦→ Φ∗

𝑎 has the following form:

V(Φ1, . . . ,Φ𝑛) = V2(Φ1, . . . ,Φ𝑛) + V4(Φ1, . . . ,Φ𝑛), (1)
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with

V2(Φ1, . . . ,Φ𝑛) =
𝑛∑︁

𝑎=1
𝜇2
𝑎Φ

†
𝑎Φ𝑎 +

𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝜇2
𝑎𝑏H𝑎𝑏, (2)

V4(Φ1, . . . ,Φ𝑛) =
𝑛∑︁

𝑎=1
𝜆𝑎 (Φ†

𝑎Φ𝑎)2 +
𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝜆𝑎,𝑏 (Φ†
𝑎Φ𝑎) (Φ†

𝑏
Φ

𝑏
)

+
𝑛∑︁

𝑎=1

𝑛−1∑︁
𝑏=1

𝑛∑︁
𝑐=𝑏+1

𝜆𝑎,𝑏𝑐 (Φ†
𝑎Φ𝑎)H𝑏𝑐 +

𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

�����
(𝑎,𝑏)≤ (𝑐,𝑑)

𝜆𝑎𝑏,𝑐𝑑H𝑎𝑏H𝑐𝑑

+
𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

�����
(𝑎,𝑏)≤ (𝑐,𝑑)

𝜆A
𝑎𝑏,𝑐𝑑

A𝑎𝑏A𝑐𝑑 (3)

All quadratic 𝜇2
𝑎, 𝜇2

𝑎𝑏
in V2, and quartic 𝜆𝑎, 𝜆𝑎,𝑏, 𝜆𝑎,𝑏𝑐, 𝜆𝑎𝑏,𝑐𝑑 , 𝜆A

𝑎𝑏,𝑐𝑑
in V4, parameters are real

(hence real 𝑛HDM). We use hermitian and antihermitian bilinears

H𝑎𝑏 ≡ 1
2
(Φ†

𝑎Φ𝑏
+Φ

†
𝑏
Φ𝑎), A𝑎𝑏 ≡ 1

2
(Φ†

𝑎Φ𝑏
−Φ

†
𝑏
Φ𝑎), 𝑎 < 𝑏. (4)

Assuming an appropriate electroweak symmetry breaking vacuum, expansion of fields reads

Φ𝑎 =
𝑒𝑖 𝜃𝑎
√

2

( √
2C+

𝑎

𝑣𝑎 + R𝑎 + 𝑖 I𝑎

)
, ⟨Φ𝑎⟩ =

𝑣𝑎𝑒
𝑖 𝜃𝑎

√
2

(
0
1

)
, (5)

where the vevs ⟨Φ𝑎⟩ are parameterized by 𝑣𝑎 ∈ R+, 𝑣2
1 + . . . + 𝑣2

𝑛 = 𝑣2 ≃ 2462 GeV2, and
𝜃𝑎 ∈ [0; 2𝜋[, moduli and phases respectively. Individual phases have no physical meaning: all
CP violation arising from the vacuum is encoded in the phase differences 𝜃𝑎 − 𝜃𝑏. To obtain the
stationarity conditions, one first computes

𝑉 (𝑣1, . . . , 𝑣𝑛, 𝜃1, . . . , 𝜃𝑛) = V(⟨Φ1⟩, . . . , ⟨Φ𝑛⟩), (6)

and then sets derivatives with respect to the vev parameters to zero,

𝜕𝑣1𝑉 = . . . = 𝜕𝑣𝑛𝑉 = 0, 𝜕𝜃1𝑉 = . . . = 𝜕𝜃𝑛𝑉 = 0, (7)

with 𝜕𝑥𝑉 ≡ 𝜕𝑉
𝜕𝑥

. The lack of physical meaning of individual phases translates into 𝜕𝜃1𝑉+. . .+𝜕𝜃𝑛𝑉 =

0 by construction, irrespective of imposing that each term is zero: Eqs. (7) give 2𝑛−1 (independent)
stationarity conditions. With Eqs. (2)-(3), the derivatives in Eqs. (7) read

𝜕𝑣 𝑗𝑉 = 𝜇2
𝑗𝑣 𝑗 +

1
2

𝑗−1∑︁
𝑎=1

𝜇2
𝑎 𝑗𝑐𝑎 𝑗𝑣𝑎 +

1
2

𝑛∑︁
𝑏= 𝑗+1

𝜇2
𝑗𝑏𝑐 𝑗𝑏𝑣𝑏 + [𝜆′𝑠],

𝜕𝜃 𝑗
𝑉 =

1
2

𝑗−1∑︁
𝑎=1

𝜇2
𝑎 𝑗 𝑠𝑎 𝑗𝑣𝑎𝑣 𝑗 −

1
2

𝑛∑︁
𝑏= 𝑗+1

𝜇2
𝑗𝑏𝑠 𝑗𝑏𝑣 𝑗𝑣𝑏 + [𝜆′𝑠],

(8)

where the shorthand notation 𝜃𝑎𝑏 = 𝜃𝑎 − 𝜃𝑏, 𝑐𝑎𝑏 = cos 𝜃𝑎𝑏, 𝑠𝑎𝑏 = sin 𝜃𝑎𝑏, is used, and [𝜆′𝑠] stand
for terms involving only quartic couplings, not displayed for conciseness.
The mass terms within V ⊃ −LMass are

−LMass = ®C† 𝑀2
± ®C + 1

2
®N𝑇𝑀2

0
®N, with ®C† = (C−

1 , . . . ,C
−
𝑛 ), ®N𝑇 = (R1, . . . ,R𝑛, I𝑎, . . . , I𝑛) (9)
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𝑀2
± is the 𝑛 × 𝑛 charged mass matrix and 𝑀2

0 the 2𝑛 × 2𝑛 neutral mass matrix, whose elements are

(𝑀2
±)𝑎,𝑏 =

[
𝜕2V

𝜕C+
𝑎𝜕C−

𝑏

]
, (𝑀2

0 )𝑎,𝑏 =

[
𝜕2V

𝜕R𝑎𝜕R𝑏

]
,

(𝑀2
0 )𝑛+𝑎,𝑛+𝑏 =

[
𝜕2V
𝜕I𝑎𝜕I𝑏

]
, (𝑀2

0 )𝑎,𝑛+𝑏 = (𝑀2
0 )𝑛+𝑏,𝑎 =

[
𝜕2V

𝜕R𝑎𝜕I𝑏

] (10)

where [ ] above are evaluated at C±
𝑎, R𝑎, I𝑎 → 0. Focusing on the number of quadratic couplings,

V2 in Eq. (2) has 𝑛(𝑛 + 1)/2 of them (𝑛 𝜇2
𝑎 and 𝑛(𝑛 − 1)/2 𝜇2

𝑎𝑏
with 𝑎 < 𝑏) to be compared with

the 2𝑛− 1 (independent) stationarity conditions. For 𝑛 = 2 both numbers match and the stationarity
conditions can be used to trade all quadratic couplings for quartic couplings × vevs. For 𝑛 > 2,
one is quickly driven into an overabundance of quadratic couplings with respect to stationarity
conditions. This could lead one to expect that the existing free quadratic couplings can drive
arbitrarily large new scalar masses, new meaning neither the would-be Goldstone bosons (wbG)
nor the light Higgs-like state. As we prove analytically, that reasonable expectation is surprisingly
misled.

3. Analysis

If one were capable of carrying out analytically the obtention of the eigenvalues of the charged
and neutral scalar mass matrices for an arbitrary number of doublets, one would read out that,
surprisingly, apart from the massless wbG and the Higgs-like scalar, there are one charged and two
neutral scalars that are light, i.e. with masses not exceeding O(𝑣). Without this capacity, one can
gain some insights through a numerical analysis as discussed in detail in [14]. Analytically, we can
nevertheless proceed as follows. First, driving the new scalar masses to a regime of large values
requires large quadratic terms ≫ 𝑣2. In that case, it might be worth considering the stationarity
conditions and the mass matrices without quartic couplings at all since our numerical exercise
hints us in that the light states are possibly independent of those couplings. Then, considering
the whole problem without quartic couplings, this can only make sense if these unexpected states
appear as eigenstates with eigenvalues equal to zero, i.e. null eigenvectors. That is the case,
and the path that we will follow is: (i) write down the mass matrices in the mentioned regime in
which quartic couplings are dropped, (ii) notice a property that reduces the problem of dealing
with both charged 𝑛 × 𝑛 and neutral 2𝑛 × 2𝑛 mass matrices to just dealing with the charged mass
matrix, (iii) analyze the case of the wbG for a better understanding or inspiration. One can then
think of the complete problem including quartic couplings as a (degenerate) perturbation theory
problem where the contributions to the entries of the mass matrices from the quartic couplings
are the perturbation. The important point to anticipate is that, consequently, null eigenvectors of
the quadratic-couplings-alone mass matrices cannot yield scalars with squared masses much larger
than the 𝜆 ×𝑣2 perturbation. Without quartic couplings, the scalar potential in Eqs. (1)-(3) is simply
V → V2. The stationarity conditions are as in Eqs. (8) with [𝜆′𝑠] → 0. Not using (yet) the
stationarity conditions, one can read the mass terms −LMass ⊂ V2:

[𝑀2
±]𝑎,𝑎 = 𝜇2

𝑎, [𝑀2
±]𝑎,𝑏 = [𝑀2

±]∗𝑏,𝑎 =
1
2
𝑒𝑖 𝜃𝑎𝑏𝜇2

𝑎𝑏, 𝑎 < 𝑏, 𝑀2
0 =

(
Re

(
𝑀2

±
)

Im
(
𝑀2

±
)

−Im
(
𝑀2

±
)

Re
(
𝑀2

±
) )

(11)
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with Re
(
𝑀2

±
)𝑇

= Re
(
𝑀2

±
)
, Im

(
𝑀2

±
)𝑇

= −Im
(
𝑀2

±
)
. Now, if 𝑀2

± has a null eigenvector ®𝑐 ∈ C𝑛,
𝑀2

± ®𝑐 = ®0𝑛; expanding real and imaginary parts, one immediately obtains

Re
(
𝑀2

±

)
Re ( ®𝑐) − Im

(
𝑀2

±

)
Im ( ®𝑐) = ®0𝑛, Im

(
𝑀2

±

)
Re ( ®𝑐) + Re

(
𝑀2

±

)
Im ( ®𝑐) = ®0𝑛. (12)

In matrix form, Eqs. (12) give

𝑀2
0 ®𝑟1 = ®02𝑛, 𝑀2

0 ®𝑟2 = ®02𝑛, with ®𝑟1 = (Re ( ®𝑐) ,−Im ( ®𝑐))𝑇 , ®𝑟2 = (Im ( ®𝑐) ,Re ( ®𝑐))𝑇 . (13)

From one null eigenvector ®𝑐 of 𝑀2
±, we obtain the two null eigenvectors ®𝑟1 and ®𝑟2 of 𝑀2

0 in Eq. (13).
We already know one null eigenvector ®𝑐 𝑇

𝐺
= (𝑣1, . . . , 𝑣𝑛) of 𝑀2

±. In terms of the doubling of ®𝑐𝐺 in
two null eigenvectors of 𝑀2

0 , we have

®𝑟 𝑇𝐺 =

(
®0𝑛, 𝑣1, . . . , 𝑣𝑛

)
, ®𝑟 𝑇ℎ =

(
𝑣1, . . . , 𝑣𝑛, ®0𝑛

)
, then 𝑀2

0 ®𝑟𝐺 = 𝑀2
0 ®𝑟ℎ = ®02𝑛. (14)

The vector ®𝑟𝐺 corresponds to the neutral wbG and ®𝑟ℎ to the Higgs-like scalar, is there another null
eigenvector of 𝑀2

±? If that was the case, it would account for the additional two neutral and one
charged scalars with electroweak-scale masses encountered in the numerical explorations. Consider

®𝑐 𝑗 = 𝑣 𝑗𝑒
𝑖2𝜃 𝑗 , then 𝑀2

± ®𝑐 =

(
𝑒𝑖2𝜃1

𝑣1
(𝜕𝑣1𝑉2 − 𝑖𝜕𝜃1𝑉2), . . . ,

𝑒𝑖2𝜃𝑛

𝑣𝑛
(𝜕𝑣𝑛𝑉2 − 𝑖𝜕𝜃𝑛𝑉2)

)𝑇
(15)

It is clear that ®𝑐 is indeed a null eigenvector of 𝑀2
± owing to the stationarity conditions. According

to Eq. (13), ®𝑟1 and ®𝑟2 are null eigenvectors of 𝑀2
0 :

®𝑟 𝑇1 = (Re ( ®𝑐)𝑇 ,−Im ( ®𝑐)𝑇 ), ®𝑟 𝑇2 = (Im ( ®𝑐)𝑇 ,Re ( ®𝑐)𝑇 ) then 𝑀2
0 ®𝑟1 = 𝑀2

0 ®𝑟2 = ®02𝑛. (16)

Although ®𝑐 is not orthogonal to ®𝑐𝐺 , and correspondingly ®𝑟1 and ®𝑟2 are not orthogonal to ®𝑟𝐺 and ®𝑟ℎ
in Eq. (14), since they are independent, one can always orthonormalize à la Gram-Schmidt.
Let us recap. Since masses much larger than the electroweak scale 𝑣 can only be obtained with
large quadratic couplings ≫ 𝑣2 when quartic couplings are bounded by perturbativity constraints,
we have analyzed the mass matrices in the absence of quartic couplings. We have found that in
this regime, besides the expected null eigenvectors of 𝑀2

± and 𝑀2
0 associated to the wbG and the

Higgs-like scalar, there are, unexpectedly, further null eigenvectors, one of 𝑀2
± and two of 𝑀2

0 . One
can now think of the complete picture, including quartic couplings as a perturbation with respect to
the previous analysis –it is indeed degenerate perturbation theory that must be considered–. Besides
the wbG which remain massless, it is thus clear that out of the remaining null eigenvectors of the
“no-quartics” mass matrices, ®𝑐 in Eq. (15), ®𝑟1 and ®𝑟2 in Eq. (16), together with ®𝑟ℎ in Eq. (14), one
charged and three neutral scalars get squared masses of order (𝜆’s) ×𝑣2. They are light: considering
perturbativity requirements on the quartic couplings, their masses cannot be much larger than the
electroweak scale. More light states might be present when a regime other than “all quadratic
couplings are much larger than 𝑣2” is considered: the novel and relevant point is that with so
few assumptions –a real 𝑛HDM with SCPV and bounded quartic couplings–, one can establish
that, unexpectedly and no matter the number of doublets 𝑛, at least three new scalars must be
light. Considering this result, phenomenological consequences command attention. The question
is beyond the scope of the present work for several reasons. Three types of interactions of these
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scalars should be considered: (i) the ones among scalars arising from the quartic terms in Eq. (3),
(ii) the ones arising from their Yukawa couplings to fermions, and (iii) the ones arising from the
covariant derivatives in the kinetic terms (𝐷𝜇Φ𝑎)†(𝐷𝜇Φ𝑎). Considering the minimality of our
assumptions and the large freedom available in both the interactions among the scalars and their
couplings to fermions, the third type of interaction, involving scalars and gauge bosons, appears a
priori better suited on that respect if observables insensitive to the first two types of interactions
were available. However, knowing that scalars with electroweak-scale masses might be present is
not sufficient, a better understanding of the states is necessary. Even in the regime where, apart from
the necessarily light states, all other scalars are much heavier, these eigenvectors –which define the
mixings in the scalar sector– depend critically on the quartic couplings. If one is not in that regime
and there are more light states, the situation is even more involved, precluding at this stage a generic
approach to guaranteed or clearly promising discovery prospects.

4. Conclusions

Extended scalar sectors, in particular multi-Higgs doublets models, featuring spontaneous
electroweak symmetry breaking, necessarily include a Higgs-like state with mass not larger than
the electroweak scale if perturbativity requirements are imposed on the potential. Owing to un-
constrained quadratic couplings, one naive expectation is that, generically, all new scalars could be
made arbitrarily heavy, with masses much larger than the electroweak scale. We have analyzed the
case of real 𝑛HDM with SCPV, where contrary to such expectations and despite the abundance of
free quadratic couplings, at least one charged and two additional neutral states have masses that
cannot be larger than the electroweak scale, also due to perturbativity requirements on the quartic
couplings in the potential.
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