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With an appropriate Y NN force, the A single-particle potential (A potential) can be made strongly
repulsive at high density, and one can solve the hyperon puzzle of neutron stars. We investigate
the consistency of such a A potential, evaluated recently from Y N and Y NN forces based on chiral
effective field theory, with hypernuclear data and heavy-ion collision data. It is found that model
calculations with such a A potential can reproduce the data of the A hypernuclear spectroscopy
and the A directed flow in heavy-ion collisions. Also, we evaluate the X potential, which can be
calculated by using the same hyperon forces as for the A potential. Specifically, we show that the
low-energy constants characterizing the strength of the Y NN force can be chosen to suppress the
appearance of the A’s in neutron stars while at the same time the empirical value of the ¥ potential
is reproduced.
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1. Introduction

The hyperon puzzle of neutron stars refers to the observation that most equations of state (EOSs)
with hyperons are too soft to support the observed massive neutron stars [1]. One promising solution
is that the three-baryon forces (3BFs) among hyperon (Y) and nucleons (/) are strongly repulsive
so that the hyperons cannot appear in neutron stars. For example, in Ref. [2], YNN forces have
been constructed based on the decuplet dominance approximation [3] and employed together with a
Y N potential derived within chiral effective field theory (yEFT) [4]. With such a combination, a A
single-particle potential (A potential) fulfilling that scenario can be obtained. A similar A potential
can be obtained based on the hypernuclar spectroscopy [5]. An analysis employing the up-to-date
tuned chiral YN potential [6], which is based on the combined analysis of the pA scattering and
recent pA femtoscopy data [7], suggests that additional repulsion by the Y NN force is required to
reproduce the empirical value of the A potential at the saturation density.

In this contribution, we examine whether the A potentials published in Ref. [2] are consistent
with the A separation energies of hypernuclei and with the directed flow v; of A in heavy-ion
collisions. Furthermore, we investigate the impact of the Y NN interactions proposed in Ref. [2] on
the X single-particle potential (X potential).

Let us emphasize that our work is in line with a recent trend in nuclear matter studies [8—10],
conducting a unified approach integrating nuclear experiments and neutron star observations with
the modern nuclear force from yEFT to obtain a well-constrained EOS of dense matter. This
approach contributes to a more comprehensive understanding of both nuclear experiments and
astrophysical observations. For a microscopic description of EOS, the properties of hyperons in
nuclear matter should also be constrained. We utilize the experimental data involving hyperons to
evaluate the validity of the existing A potential, which is important in determining the onset density
of strangeness.

2. Evaluating the repulsive A potential from A hypernuclear data

First, we utilize the A hypernuclear spectroscopy to examine the A potential. We consider
three A-potential models (Chi3, Chi2, and LY-1V) as follows (see Ref. [11] for more details): We
constructed the Chi3 potential by fitting the result of yEFT with YN and YNN forces [2, 12]
to the Skyrme-type A potential [11]. The YN force is chosen as NLO13(500) [4], while the
YNN force is constructed by the decuplet dominance approximation [3]. For reference, the Chi2
potential was similarly constructed without the 3BF. The LY-IV potential is a conventional A
potential [13] attractive at high density, with which A’s appear in dense neutron star matter. The
density dependence of the A potentials is plotted on the left panel of figure 1. The momentum
dependencies for Chi2, Chi3, and LY-IV in the lower momentum region k < 1.0 fm~! exhibit
behaviors similar to those of Kohno2, Kohno3, and LY-IVmomSoft shown on the right panel of
figure 1, respectively (see Ref. [11] for the comparison). We employ the Skyrme-Hartee-Fock
method using the above-mentioned three different A potentials. One parameter that cannot be
determined from the uniform-matter results is tuned to reproduce the A binding energy data of liC.

We compare the model calculations with data on the separation energies of A hypernuclei [11]
on the left panel of figure 2. Chi3 reproduces the data as accurately as LY-IV. In contrast, we found
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that Chi2 overbounds by several MeV due to the excessive potential depth at the saturation density
po ~ 0.16 fm™3. Thus, Chi2 can be excluded, yet we need other data to constrain the repulsion of
the A potential at high densities.

3. Evaluating the repulsive A potential from heavy-ion collision data

Next, we consider the rapidity dependence of the A directed flow in heavy-ion collisions [15],

W=@WF«;&—> (1)
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where ¢ is the azimuthal angle measured from the reaction plane and p and p, are the transverse
momenta of a particle. We use the Lorentz vector version of the relativistic quantum molecular
dynamics (RQMDv) model [16] implemented in the JAM2 transport code!.

In the heavy-ion collision simulation, the high momentum part of the momentum dependence
is important. We construct Chi3momSoft, Chi3momHard, and LY-IVmomSoft by extrapolating the
momentum dependence of Chi3 and LY-IV to a high momentum region by assuming the Lorentzian
form:

f(x k)
1+ [(k - k") /ul*

where C and u are fitting parameters and f(x, k) is the single-particle distribution function. In

wmmﬂzgffk @)
Lo

the actual heavy-ion simulations, we implement the momentum-dependent potential as the Lorentz

lThttps://gitlab.com/transportmodel/jam2
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Figure 1: (left panel) Density dependence of the A potential. GKW3 represents the results from yEFT
with YN and YNN forces [2]. GKW?2 is also from yEFT but without the 3BFs [2]. Chi3 (solid line) and
Chi2 (dashed line) are fitted to GKW2 and GKW3 up to p/po < 1.5, respectively. LY-IV (dotted line) is a
conventional A potential [13]. (right panel) Momentum dependence of the A potential. Kohno3 represents
the result from yEFT with YN and Y NN forces [12]. Kohno?2 is the result from yEFT without the 3BFs [12].
Chi3momSoft (solid line) and Chi3momHard (dash-dotted line) are constructed to reproduce Kohno3 up to
2.5 fm™! and 1.0 fm™!, respectively. LY-IVmomSoft (dotted line) is fitted to the momentum dependence of
LY-IV up to 1.0 fm~".
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vector Uk, [15]. Since yEFT is not entirely reliable above the momentum cutoff of 550 MeV =~
2.8 fm~! [12], we prepared two variations: Chi3momHard and Chi3momSoft are constructed to
reproduce the yEFT result [12] up to 2.5 fm~! and 1.0 fm™!, respectively. LY-IVmomSoft is
constructed to reproduce the momentum dependence of LY-IV with Eq. (2) up to 1.0 fm~!. The
momentum dependence of the A potentials is plotted on the right panel of figure 1. We note that
the density dependence of Chi3momSoft and Chi3momHard is almost identical to that of Chi3, as
is LY-IVmomSoft to LY-IV.

The results of vy of A in mid-central Au + Au collisions at y/syy = 4.5 GeV are shown
on the right panel of figure 2 and compared with the STAR data [14]. One can see that both
Chi3momSoft and LY-IV reproduce v; of A with equal accuracy, which implies that v of A is
not so sensitive to the density dependence of the A potential. On the other hand, Chi3momHard
underestimates v; of A, which indicates that v| of A is sensitive to the momentum dependence of
the A potential. Experimental information on the optical potential of A may be useful for reducing
the model uncertainty.

4. How about the X~ potential?

As already mentioned above, in Ref. [2], the 3BFs have been adjusted in such a way that the
A potential is sufficiently repulsive at high density so that the appearance of A hyperons in neutron
stars is suppressed. This is possible for different combinations of the low-energy constants (LECs),
H| and H,, that characterize the strength of the 3BF (see the solid lines in figure 6 of Ref. [2]). For
other combinations, cf. the dashed lines, the repulsion might not be strong enough to achieve that
goal.
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Figure 2: (left panel) A binding energy of the A hypernuclei. Experimental data (cross) can be found in
Ref. [11]. The figure is adopted from Ref. [11]. (right panel) Directed flow of A in mid-central Au+Au
collisions at 4/syn = 4.5 GeV. The STAR data are taken from Ref. [14]. The figure is updated from Ref. [15]
by using the updated version of JAM2.
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Hi () [ H (F7)

-2.650 0.100
-2.200 0.000
-1.800 —-0.100
-1.350 —-0.200
-0.900 -0.300

Table 1: Considered combinations of LECs of the
YNN 3BF that reproduce Up(pp) = —30 MeV for
NLO13(500). The values are in units of the inverse
squared pion-decay constant with f = 92 MeV, and
correspond to the left line in figure 6 of Ref. [2]. The
values are taken from Gerstung’s PhD thesis [21].
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Figure 3: X (red solid) and A (black dashed) po-
tentials in symmetric nuclear matter. The horizontal
axis corresponds to the three-body LECs H; with
H, listed in table 1.

However, it remains unclear how those 3BFs affect the corresponding X potential. The effective
two-body forces resulting from the 3BFs considered in Ref. [2] contribute not only to the AN and
2N channels but also to the AN-XN transition potential. A presently accepted constraint on the X
potential is Us (pg) = 30 =20 MeV [17], which is inferred using data on X~ atoms and on (7", K*)
inclusive spectra. This constraint is fairly well met by the original chiral YN potentials from 2013
and 2019 without 3BF [18, 19].

We evaluate the X potential in the same way as Gerstung et al. [2] have done for the A potential.
The Brueckner-Hartree-Fock method with a continuous choice [18] is employed to calculate the
hyperon single-particle potential. Regarding the nuclear forces, the N°LO NN potential from
Ref. [20] is used, while the NNN 3BF at N?LO is taken into account via a density-dependent
two-body force. The cutoff in the regulator function [20] is chosen as 500 MeV. The nuclear
saturation properties are reproduced by the nucleon forces [21].

For the hyperonic force, the YN potential NLO13(500) [4] is employed. The YNN force is
implemented as an effective density-dependent Y N two-body force. The number of LECs involved
in the YN N force is reduced by assuming decuplet dominance approximation [3]. Then, there are
only three LECs: one related to the meson-octet-decuplet baryon vertex, and two denoted by H| and
H, characterizing the strengths of the contact vertices with three-octet and one-decuplet baryons.
The meson-octet-decuplet coupling is constrained by the decay width I'(A — Nr), and its large- N,
value is employed [2]. The two LECs of the contact terms are fixed by requiring the reproduction
of the empirical value of the A potential [11, 17],

Ua(po) = =30 MeV, 3)

inferred by using the A hypernuclear spectroscopy, and a strongly repulsive Ux at high density,
sufficient to resolve the hyperon puzzle [2]. Some combinations of the contact LECs that fulfill
these requirements are listed in table 1.

The A and X potentials in symmetric nuclear matter at pg are shown in figure 3 for various
combinations of H| and H,. The A potential is practically constant by construction, i.e., due to the
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Figure 4: Density dependence of the A (left panel) and ¥ (right panel) potentials in symmetric nuclear
matter. The red solid lines are calculated by using the 3BF LECs in table 1. The only two-body case with
the NLO13(500) parameter set is represented by the dashed line. The black bands show the empirical values
of the A potential, —31.5 < Up(pp) < —28.0 MeV [11], and the X potential, Us(pg) = 30 + 20 MeV [17].

constraint (3). In contrast, the X potential varies from about 30 to 10 MeV.

In figure 4, we show the density dependence of the single-particle potentials. One can see
that certain sets of the 3BF LECs reproduce the empirical constraint Us (p¢) = 30 + 20 MeV [17].
Interestingly, those 3BFs also yield A potentials that are strongly repulsive at high densities, as
needed to suppress the A hyperons in neutron stars. Thus, the 3BFs can be chosen to solve the
hyperon puzzle of neutron stars while at the same time the empirical value of Uy, is reproduced.

5. Summary

To suppress the A hyperons in neutron stars, Gerstung et al. [2] calculated the A single-particle
potential by adding an effective 3BF to the chiral YN potentials of the Jiilich-Bonn group [4], which
is one of the state-of-the-art modeling of the potential based on the yEFT. In this contribution, we
have examined the consistency of those potentials with the data from experiments and observations
of substantially different physics. Specifically, we referenced the data from the A hypernuclear
spectroscopy, the A directed flow created in heavy-ion collisions, and the value of the X single-
particle potential at the saturation density. Some of the 3BF LEC sets of (H{, H;) from Ref. [2]
turned out to be consistent with the empirical information in all three physics.

The results presented here are based on a single chiral Y N potential, NLO13(500). Variants such
as NLO19 [19] should be considered in order to provide an estimate of the theoretical uncertainty.
Furthermore, recently a Y N interaction up to N>LO in the chiral expansion has been presented [22].
Initial studies suggest that it yields more attractive A and X potentials [22]. Here, a more rigorous
investigation of the in-medium properties is required. Such a work will be performed in the future.

In addition, it is desirable to improve the theoretical treatment of the heavy-ion collision
simulation. The results shown here have been obtained by using the same A potential for all
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other hyperons, including their resonance states. As a large number of ¥ hyperons and hyperon
resonances are produced during the evolution of the heavy-ion collisions, and as the behavior of the
A and X potentials are very different, as seen in figure 4, we intend to include different potentials
for different hyperons to explore their effects on v; of A and X in future studies.
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