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Lorentz Violation, CPT Violation, and Spectroscopy Experiments

1. Introduction

The idea that tiny deviations from Lorentz symmetry could signal new physics beyond the
Standard Model and General Relativity [1] motivated the creation of a comprehensive framework
for systematically testing Lorentz symmetry, known as the Standard-Model Extension (SME) [2].
Closely related to Lorentz symmetry is CPT symmetry since CPT violation implies Lorentz violation
in a realistic quantum effective field theory [3]. Thus, the SME also serves as a tool for systematically
testing CPT symmetry.

The SME associates each Lorentz-violating operator with a unique coefficient for Lorentz
violation, referred to as an SME coefficient. Any indisputable evidence of a nonzero SME coefficient
would indicate a breaking of Lorentz symmetry. Approximately half of the Lorentz-violating
operators in the SME also violate CPT symmetry. Therefore, the coefficients associated with these
operators are coefficients for CPT violation, meaning that evidence for a nonzero value for these
coefficients would imply a breaking of CPT symmetry.

Each experiment testing these symmetries is sensitive to a limited number of SME coefficients.
Thus, testing Lorentz and CPT symmetry requires considering a wide array of experimental tests
and identifying tests sensitive to unconstrained coefficients. Furthermore, as the SME allows
us to quantify each experiment’s sensitivity to individual coefficients, it permits us to assess the
competitiveness, complementarity, or overlap among various tests of Lorentz symmetry.

The initial versions of the SME focused on Lorentz-violating operators with mass dimensions
𝑑 ≤ 4, known as minimal operators, to limit introducing nonrenormalizable terms into the frame-
work [2]. However, this restriction was unnecessary because the SME parts from the premise that
the Lorentz-violating underlying theory would manifest as an effective field theory at low energies,
which does not need to be renormalizable, given that it is only valid within a limited energy range.
Therefore, there is no reason to exclude nonminimal operators, those with 𝑑 ≥ 5, from the SME.
Since then, several expansions of the SME incorporated nonminimal operators [4–8]. One argu-
ment for including nonminimal operators is that they offer a compelling explanation for the lack of
evidence for Lorentz and CPT violation as their contributions to experimental signals are expected
to be suppressed by the ratio of the low-energy experimental scale to the higher-energy scale where
the effective field theory breaks down.

The SME distinguishes between similar Lorentz-violating operators that act on different particle
types. For instance, an electron Lorentz-violating operator with the same form as a muon operator
will be associated with different SME coefficients, and the framework does not assume any a priori
relationship between these coefficients. Consequently, the SME allows for the possibility that
Lorentz symmetry could be broken in the muon sector while remaining intact in the electron sector.
Thus, tests of Lorentz symmetry involving exotic matter are highly relevant in the SME context, as
these tests can provide unique insights into potential sector-specific Lorentz violations.

An example of an exotic atom used to test Lorentz symmetry is muonium, which provides
access to the muon SME coefficients. Not long after the introduction of the SME, the development
of models for testing Lorentz symmetry with muonium [9] resulted in bounds on SME minimal
coefficients [10]. More recently, models for muonium spectroscopy incorporating nonminimal
coefficients were derived, leading to bounds on nonminimal muon coefficients for Lorentz viola-
tion [11]. Beyond muonium, models for testing Lorentz symmetry with muonic atoms [11] and
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positronium have also been proposed [12].
As mentioned, the SME is a framework for the systematic study of CPT symmetry, and for that

reason, SME models for antimatter experiments have been prevalent in the literature. These models
include early ones that explore the potential of antihydrogen spectroscopy for testing Lorentz
and CPT symmetry [13], as well as more recent models that incorporate nonminimal operators
[12]. Similarly, models for Penning trap experiments with antiparticles [14] and for studying the
anomalous free-fall motion of antimatter [15] were initially derived from the minimal SME and
later extended to include nonminimal operators [8, 16].

This overview focuses on nonminimal models for testing Lorentz and CPT symmetry using
atomic and molecular spectroscopy, particularly those outlined in [11, 12, 17, 18]. Due to this
narrow scope, some notable topics are excluded from this discussion. For example, we will
not cover the significant advancements made in antiproton Penning trap experiments [19] or the
current models for Lorentz and CPT violation that have been or could potentially be tested in these
experiments [14, 16, 20]. Another topic omitted here is free-fall antimatter tests, including the
recent measurement of antihydrogen free-fall acceleration [21] and other proposed experiments
[22, 23]. High-precision spectroscopy experiments that have tested models for Lorentz and CPT
symmetry limited to minimal SME coefficients [24] are also outside the scope of this overview.

In this work, we will present the nonrelativistic (NR) coefficients that serve as the effective
SME coefficients in the models discussed here. We will also examine signals for Lorentz violation
proposed or used to impose constraints on these NR coefficients. Additionally, we will explore the
prospects for establishing new constraints or improving existing ones using spectroscopy experi-
ments with exotic atoms.

2. Main

The Lorentz-violation perturbations for the atomic or molecular systems considered in [11,
12, 17, 18] were obtained by adding a single-particle perturbation 𝛿ℎNR

𝑤 for each fermion in the
atom, where 𝑤 is an index specifying the fermion type. The single-particle perturbation 𝛿ℎNR

𝑤 is the
nonrelativistic perturbation derived in [6] that captures the dominant effect of Lorentz violation on
the free motion of the fermion. As shown in [12], there are terms in the single-particle perturbation
that do not contribute to the energy of atomic or molecular levels. Excluding these terms, the
Lorentz-violating single-particle perturbation takes the form

𝛿ℎNR
𝑤 = −

∑︁
𝑘 𝑗𝑚

| 𝒑 |𝑘0𝑌 𝑗𝑚( �̂�)
(
V𝑤

NR
𝑘 𝑗𝑚 + 𝝈 · 𝝐𝑟T𝑤NR(0𝐵)

𝑘 𝑗𝑚

)
+
∑︁
𝑘 𝑗𝑚

| 𝒑 |𝑘𝝈 ·
(
+1𝑌 𝑗𝑚( �̂�)𝝐− − −1𝑌 𝑗𝑚( �̂�)𝝐+

)
T𝑤NR(1𝐵)

𝑘 𝑗𝑚
. (1)

Here, the summation index 𝑘 is limited to the values 0, 2, and 4; 𝑗 ranges from 0 to 5; and 𝑚 takes
values in the range − 𝑗 ≤ 𝑚 ≤ 𝑗 .

For this presentation, a detailed understanding of this perturbation is not required. Therefore,
we will focus only on the essential aspects needed to advance the discussion. In particular, we will
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use the general form of 𝛿ℎ𝑤 to clarify some of the indices and conventions used to describe the
nonrelativistic spherical coefficients V𝑤

NR
𝑘 𝑗𝑚

, T𝑤NR(0𝐵)
𝑘 𝑗𝑚

and T𝑤NR(1𝐵)
𝑘 𝑗𝑚

.
First, the NR coefficients in 𝛿ℎNR

𝑤 are linear combinations of SME coefficients that couple to
operators with a definite CPT sign. These linear combinations are defined as

V𝑤
NR
𝑘 𝑗𝑚 = 𝑐𝑤

NR
𝑘 𝑗𝑚 − 𝑎𝑤

NR
𝑘 𝑗𝑚,

T𝑤NR(𝑞𝑃) 𝑘 𝑗𝑚 = 𝑔𝑤
NR(𝑞𝑃) 𝑘 𝑗𝑚 − 𝐻𝑤

NR(𝑞𝑃)
𝑘 𝑗𝑚

, (2)

where the 𝑎- and 𝑔-type coefficients are associated with CPT-odd operators, while the 𝑐- and 𝐻-
type coefficients correspond to CPT-even ones. The V-type and T -type coefficients are convenient
notations as any nonrelativistic matter experiment is sensitive to the specific linear combinations
in (2). However, this is not the case for nonrelativistic antimatter experiments, which require a
different set of linear combinations. To distinguish these cases, we use the index 𝑤 to indicate the
antiparticle case, as opposed to 𝑤, which indicates the particle one. The combinations relevant to
antimatter experiments are given by

V𝑤
NR
𝑘 𝑗𝑚 = 𝑐𝑤

NR
𝑘 𝑗𝑚 + 𝑎𝑤

NR
𝑘 𝑗𝑚,

T𝑤NR(𝑞𝑃) 𝑘 𝑗𝑚 = −𝑔𝑤NR(𝑞𝑃) 𝑘 𝑗𝑚 − 𝐻𝑤
NR(𝑞𝑃)
𝑘 𝑗𝑚

, (3)

where the distinction between (2) and (3) lies in the sign of the coefficients associated with CPT-odd
operators. Note that the coefficients with a definite CPT sign are always identified with the particle
rather than the antiparticle, which aligns with common conventions in the literature.

The NR coefficients are independent linear combinations of the SME coefficients that appear in
the SME Lagrange density [6]. It is convenient to define these linear combinations as effective SME
coefficients, as they are prevalent in Lorentz-violation corrections to observables in nonrelativistic
experiments. The relationship between the NR coefficients and the standard coefficients for Lorentz
and CPT violation is given in Eqs. (111) and (112) of [6]. A notable feature of the nonrelativistic
coefficients is that they receive contributions from SME coefficients associated with Lorentz-
violating operators of different mass dimensions. Generally, all nonrelativistic coefficients receive
contributions from nonminimal SME coefficients, while some also receive contributions from
minimal ones.

The notation used to specify the NR coefficients and their indices characterizes the Lorentz-
violating operators coupled to these coefficients in the perturbation (1) as explained in detail in [6].
The T -type coefficients are classified as the spin-dependent coefficients because they couple with
operators that depend on the fermion’s spin state through the Pauli vector 𝝈. In contrast, the V-type
coefficients are the spin-independent coefficients. The indices 𝑗 and 𝑚 of the NR coefficients are
the same ones as for the spin-weighted spherical harmonics 𝑠𝑌 𝑗𝑚( �̂�) in (1) and the index 𝑘 denotes
the power of the fermion’s momentum magnitude | 𝒑 |.

The models for Lorentz and CPT violation in atomic and molecular systems, based on the
single-particle perturbation (1), contain 178 NR coefficients accessible in atomic spectroscopy
experiments by particle type. For instance, hydrogen spectroscopy experiments would be sensitive
to 178 electron coefficients and an equal number of proton coefficients. Not all the 178 coefficients
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contribute to the Lorentz-violating energy shift for any arbitrary atomic level, as discussed in [12].
For example, in two-fermion atoms such as hydrogen, antihydrogen, and muonium, only coefficients
with index 𝑗 that satisfy the conditions 𝑗 ≤ 2𝐽 and 𝑗 ≤ 2𝐹 can contribute to an atomic level with
quantum number 𝐽 for the total angular momentum of the lighter fermion and 𝐹 for the total atomic
angular momentum [12]. For example, transitions between 𝑛𝑆 states in two-fermion atoms with
quantum numbers 𝐽 = 1/2 and 𝐹 ≤ 1 are only sensitive to 40 coefficients for each particle type.

Probably the most common signal for Lorentz violation in experiments conducted on the
surface of the Earth is a sidereal variation of the resonant frequency. The basic idea is that the
spectrum of an atom might depend on the atom’s orientation, defined by its total angular momentum
®𝐹, relative to a fixed reference frame. We can rotate the atom and its angular momentum ®𝐹 by
applying a magnetic field that is rotated adiabatically relative to a fixed frame. In an experiment with
a fixed magnetic field on the Earth’s surface, the planet’s rotation causes the magnetic field—and
consequently the atom—to rotate adiabatically relative to a fixed reference frame. This motion can
result in an oscillation of the resonance frequency with a period of a sidereal day.

Constraints on the SME coefficients are commonly reported in the same reference, called the
Sun-centered frame [25, 26], as they are frame-dependent. The indices 𝑗 and𝑚 of the NR coefficients
in the Sun-centered frame that contribute to the Lorentz-violating frequency shift provide insight
into the type of sidereal variation of the resonance frequency expected in the experiment. Suppose
we decompose the time variation of the transition frequency into harmonics of the sidereal frequency,
𝜔⊕ ≃ 2𝜋/(1436 min). An NR Sun-centered-frame coefficient with index 𝑚 can only contribute to
the amplitude of the |𝑚 |-th harmonic of 𝜔⊕ [12]. Since |𝑚 | ≤ 𝑗 , coefficients with index 𝑗 cannot
contribute to the amplitudes of harmonics higher than the 𝑗-th harmonic of the sidereal frequency.

Sidereal variation studies of resonance frequencies within the ground state of muonium [10] and
hydrogen[27], as well as with a Xe-He co-magnetometer [28], have been used to impose bounds on
the 𝑗 = 1 T -type NR coefficients with |𝑚 | = 1 in the electron, proton, muon, and neutron sectors of
the SME [11, 12, 17]. These experiments are only sensitive to 𝑗 = 1 coefficients because the highest
total angular momentum for the transitions considered in the experiments is 𝐹 = 1. A sidereal
variation study with a Ne-Rb-K co-magnetometer [29], which investigated sidereal variations with
the first two harmonics of the sidereal frequency, was used to impose constraints on the 𝑗 = 2
V-type neutron NR coefficients with |𝑚 | = 1 and |𝑚 | = 2 [17].

The Sun-centered frame NR coefficients with 𝑚 = 0 do not contribute to the sidereal variation
of the resonance frequency in Earth-based experiments with a fixed magnetic field [11, 12, 17].
The constant frequency shift these coefficients produce can be constrained in various ways. For
instance, some 𝑚 = 0 coefficients depend on the relative orientation between Earth’s rotation axis
and the applied magnetic field. An experiment that considered transitions within the ground state
of hydrogen with different magnetic field orientations imposed bounds on the proton and electron
T -type coefficients with 𝑗 = 1 and 𝑚 = 0 [30]. Another approach to constrain the coefficients
with 𝑚 = 0 involves testing CPT symmetry. For example, bounds on the 𝑎-type electron and
proton coefficients with 𝑗 = 0 resulted from comparing the 1𝑆-2𝑆 transition in hydrogen with that
in antihydrogen [32]. Finally, another method to impose bounds on these coefficients involves
comparing the predicted resonance frequency from the standard model with experimental results.
Bounds on 𝑎-type and 𝑐-type coefficients with 𝑚 = 0 were obtained in the electron, proton, and
muon sectors through comparisons of the 1𝑆-2𝑆 transition in positronium [12], the 1𝑆-2𝑆 transition
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in muonium [11], the classical Lamb shift in muonium [11, 31], and the 1𝑆-2𝑃 transition in
antihydrogen [33, 34].

The terms in the perturbation (1) depend on the momentum’s magnitude. Therefore, a system
might be significantly more sensitive to some coefficients than other systems, particularly those
with 𝑘 = 4, because the momentum of their constituents is considerably higher. For instance, the
proton’s momentum is higher in deuterium than in hydrogen due to its motion within the deuteron.
For that reason, deuterium can be significantly more sensitive to proton coefficients than hydrogen,
even if the sensitivity of hydrogen to the Lorentz-violating frequency shift is considerably better
[12, 18]. Another example is muonic hydrogen, where the negative muon has a greater momentum
than the positive muon in muonium. Therefore, even if the proposed improved measurement of the
hyperfine splitting within the ground state of muonium [35] is the best candidate to improve the
bounds on the 𝑘 = 0 muon coefficients, the best candidates to improve the bounds on the 𝑘 = 2 and
𝑘 = 4 coefficients are the corresponding measurements in muonic hydrogen currently pursued [36].

NR coefficients with index 𝑗 = 3 or higher remain unconstrained [26] as all the transitions
discussed so far have been between states with total angular momentum smaller than or equal to
𝐹 = 1. Therefore, Lorentz and CPT tests involving transitions to higher angular momentum states
could be sensitive to unconstrained NR coefficients. For instance, the proposed measurement of the
2𝑆-2𝑃3/2 transition in muonium might lead to the first bounds on 𝑗 = 3 muon NR coefficients [37].
Another possibility currently being studied by this author is the potential for testing Lorentz and CPT
symmetry with molecular hydrogen ions such as H+

2 and HD+. The rovibrational transitions within
the ground state of these molecules might involve states with 𝐹 > 1 due to the molecular rotation
and can be determined to a high precision [38, 39]. The possibility of molecular antihydrogen
spectroscopy has also been proposed [38, 40]. A clear advantage of molecular antihydrogen
spectroscopy for testing CPT symmetry is the possibility of high-precision spectroscopy involving
higher angular momentum states, enabling sensitivity to NR coefficients with 𝑗 ≥ 3, which are
currently inaccessible in the transitions investigated in antihydrogen [12].

3. Final Remarks

Of the 178 NR coefficients, per particle type, presented in the models in [11, 12, 17, 18, 34],
only 28 have been constrained in the muon sector and 44 in the electron, proton, and neutron sectors.
This leaves significant room to explore potential violations of CPT and Lorentz symmetry. The
primary reason for such a large proportion of unconstrained NR coefficients is the lack of Lorentz
and CPT tests involving transitions that involve high angular momentum states. While it is crucial to
continue tightening bounds on the NR coefficients—many of which can be improved significantly—
it is relevant to develop and conduct tests of Lorentz and CPT symmetry that specifically target
these unconstrained coefficients.

References

[1] V.A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683 (1989); V.A. Kostelecký and R. Potting,
Nucl. Phys. B 359, 545 (1991); Phys. Rev. D 51, 3923 (1995).

6



P
o
S
(
E
X
A
-
L
E
A
P
2
0
2
4
)
0
2
6

Lorentz Violation, CPT Violation, and Spectroscopy Experiments

[2] D. Colladay and V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002
(1998).

[3] O.W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).

[4] V.A. Kostelecký and M. Mewes, Phys. Rev. D 80, 015020 (2009).

[5] V.A. Kostelecký and M. Mewes, Phys. Rev. D 85, 096005 (2012); J.S. Díaz, V.A. Kostelecký,
and M. Mewes, Phys. Rev. D 89, 043005 (2014); V.A. Kostelecký and Z. Li, Phys. Rev. D 99,
056016 (2019).

[6] V.A. Kostelecký and M. Mewes, Phys. Rev. D 88, 096006 (2013).

[7] V.A. Kostelecký and M. Mewes, Phys. Lett. B 757, 510 (2016); Q.G. Bailey, V.A. Kostelecký,
and R. Xu, Phys. Rev. D 91, 022006 (2015); V.A. Kostelecký and J.D. Tasson, Phys. Lett. B
749, 551 (2015).

[8] V.A. Kostelecký and Z. Li, Phys. Rev. D 103, 024059 (2021).

[9] R. Bluhm, V.A. Kostelecký, and C.D. Lane, Phys. Rev. Lett. 84, 1098 (2000).

[10] V.W. Hughes et al., Phys. Rev. Lett. 87, 111804 (2001).

[11] A.H. Gomes, V.A. Kostelecký, and A.J. Vargas, Phys. Rev. D 90, 076009 (2014).

[12] V.A. Kostelecký and A.J. Vargas, Phys. Rev. D 92, 056002 (2015).

[13] R. Bluhm, V.A. Kostelecký, and N. Russell, Phys. Rev. Lett. 82, 2254 (1999).

[14] R. Bluhm, V.A. Kostelecký, and N. Russell, Phys. Rev. Lett. 79, 1432 (1997); R. Bluhm, V.A.
Kostelecký, and N. Russell, Phys. Rev. D 57, 3932 (1998); R.K. Mittleman et al., Phys. Rev.
Lett. 83, 2116 (1999).

[15] V.A. Kostelecký and J.D. Tasson, Phys. Rev. D 83, 016013 (2011); Phys. Rev. Lett. 102,
010402 (2009).

[16] Y. Ding and M.F. Rawnak, Phys. Rev. D 102, 056009 (2020); Y. Ding and V.A. Kostelecký,
Phys. Rev. D 94, 056008 (2016).

[17] V.A. Kostelecký and A.J. Vargas, Phys. Rev. D 98, 036003 (2018).

[18] A.J. Vargas, Phys. Rev. D 109, 055001 (2024).

[19] M.J. Borchert et al., Nature 601, 53 (2022); C. Smorra et al., Nature 575, 310 (2019); S.
Ulmer et al., Nature 524,196 (2015).

[20] A.J. Acevedo-López et al., Phys. Rev. D 1
¯
08, 076014 (2023).

[21] E K. Anderson et al., Nature 621, 716 (2023).

[22] P. Pérez et al., Hyperfine Interact. 233, 21 (2015).

7



P
o
S
(
E
X
A
-
L
E
A
P
2
0
2
4
)
0
2
6

Lorentz Violation, CPT Violation, and Spectroscopy Experiments

[23] A. Kellerbauer et al.., Nucl. Instr. Meth. B 266, 351-356 (2008).

[24] M.A. Hohensee et al., Phys. Rev. Lett. 111, 050401 (2013); T. Pruttivarasin et al., Nature 517,
592 (2015); C. Sanner et al., Nature 567, 204 (2019); Eli Megidish et al., Phys. Rev. Lett. 122,
123605 (2019); L.S. Dreissen et al., Nat Commun 13, 7314 (2022).

[25] V.A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005 (2002).

[26] V.A. Kostelecký and N. Russell, Rev. Mod. Phys. 83, 11 (2011); 2024 edition
arXiv:0801.0287v17.

[27] D.F. Phillips et al., Phys. Rev. D 63, 111101(R) (2001); M.A. Humphrey et al., Phys. Rev. A
68, 063807 (2003).

[28] F. Allmendinger et al., Phys. Rev. Lett. 112, 110801 (2014).

[29] M. Smiciklas et al., Phys. Rev. Lett. 107, 171604 (2011).

[30] L. Nowak et al., Phys. Lett. B 854, 139012 (2024).

[31] B. Ohayon et al., Phys. Rev. Lett. 128, 011802 (2022).

[32] M. Ahmadi et al., Nature 557, 71 (2018); Nature 541, 506 (2017).

[33] M. Ahmadi et al., Nature 578, 375 (2020).

[34] A.J. Vargas, arXiv:2411.10944 [hep-ph].

[35] P. Strasser et al., EPJ Web of Conferences 198, 00003 (2019).

[36] C. Pizzolotto et al., Eur. Phys. J. A 56, 185 (2020); P. Amaro et al., arXiv:2112.00138
[physics.atom-ph].

[37] P. Blumer et al., arXiv:2412.19580 [hep-ph].

[38] M.R. Schenkel, S. Alighanbari, and S. Schiller, Nat. Phys. 20, 383 (2024).

[39] S. Alighanbari et al., Nature 581, 152 (2020); S. Patra et al., Science 369, 1238 (2020).

[40] H. Dehmelt, Phys. Scr. T59, 423 (1995); E.G. Myers, Phys. Rev. A 98, 010101 (2018); M.C.
Zammit et al., Phys. Rev. A 100, 042709 (2019).

8


	Introduction
	Main
	Final Remarks

