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1. Introduction

Fundamental constants like the fine-structure constant, quark masses or the Fermi constant
show up not only everywhere in physics but in all sciences and huge efforts go into measuring
these constants to highest precision. Looking at the values and uncertainties of these constants in
the lists by the Particle Data Group (PDG) [1], one can see that some of them are even known to
precisions of one part in a billion. Dirac was one of the firsts to propose that these constants are
not, in fact, constant but may have changed over cosmological time scales [2] and many others
had similar ideas, e.g. [3, 4]. One way to test these proposals from a theory perspective is using
Big Bang Nucleosynthesis (BBN) as a laboratory [5–8]. BBN is the first process in the history of
our universe that is well understood. One can predict the primordial abundance for Helium-4 with
surprising accuracy even from very simple approximations. In this talk, I present our recent work
on the variation of the fine-structure constant 𝛼 [9, 10] and the Higgs Vacuum Expectation Value
(VEV) [11] and its effects on primordial abundances of the lightest elements.

2. Big Bang Nucleosynthesis

An abundance 𝑌𝑖 is defined as an element’s number density 𝑛𝑖 , 𝑖 = H, 𝑑, 3He, 4He, 6Li, . . .,
divided by the total baryon number density 𝑛𝑏 and it depends on the expansion of space, i.e. on the
Hubble constant [12], and on the rates of reactions and decays that either create or destroy element
𝑖. Plugging in initial conditions from the electron-neutrino plasma and the weak neutron-proton
rates, one needs to solve a network of differential equations like

¤𝑌𝑖 = −
∑︁
𝑗 ,𝑘,𝑙

𝑌𝑖𝑌 𝑗𝛾𝑖+ 𝑗→𝑘+𝑙 +−
∑︁
𝑘,𝑙, 𝑗

𝑌𝑘𝑌𝑙𝛾𝑘+𝑙→𝑖+ 𝑗 −
∑︁
𝑗 ,𝑘,𝑙

𝑌𝑖Γ𝑖→ 𝑗+𝑘+𝑙 +
∑︁
𝑘, 𝑗,𝑙

𝑌𝑘Γ𝑘→𝑖+ 𝑗+𝑙, 𝑌𝑖 =
𝑛𝑖

𝑛𝑏
, (1)

where Γ and 𝛾 are decay and reaction rates, respectively, and one sums over all possible reactions
and decays that involve element 𝑖. An example of such a network of reactions is displayed in figure
22 of [8].

The first code with which one could simulate BBN and calculate some primordial abundances as
functions of time was written by Wagoner et al. [13], and many others followed. In our work we used
five different publicly available codes: NUC123 [14], PArthENoPE [15], PRIMAT [8, 16], AlterBBN
[17] and the very recent PRyMordial [18]. Comparing results for the primordial abundances from
all of these codes provides an estimate of the systematical errors from choosing a different number
of reactions, sources for the rates and numerical methods.

The rough course of BBN is described in the following: at first, weak reactions between
neutrons, protons, electrons and neutrinos dominate. The number density ratio of neutrons to
protons

𝑛𝑛

𝑛𝑝

= 𝑒−𝑄𝑛/𝑇 (2)

depends on the temperature 𝑇 and the neutron-proton mass difference 𝑄𝑛 (we chose units 𝑘𝐵 = 𝑐 =

ℏ = 1). At temperatures of roughly 1 MeV, which are reached at time 𝑡 ≈ 1 s after the Big Bang,
these weak reactions freeze out, i.e., their rates become smaller than the Hubble expansion rate.
From then on, the neutron-to-proton number density ratio falls off slowly because of 𝛽-decay of free
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neutrons. After about one minute, the so-called “deuterium bottleneck” is reached that is a result of
the small deuteron binding energy: the first nuclear fusion reaction 𝑛+ 𝑝 → 𝑑+𝛾 can now efficiently
produce deuterium. Before this time, the universe was still too hot and the produced photons were
so energetic that they immediately dissolved the deuteron again. Then, with deuterium as the next
important building block, nuclear fusion effectively starts. After about three minutes, the element
abundances are more or less constant until very much later when more and heavier elements are
fused in stars. In BBN, elements up to 7Be are considered to be the most relevant.

3. Variation of the fine-structure constant

First, I presented results I derived together with my collaborators Ulf-G. Meißner and Bernard
Metsch during the course of my Master’s thesis, which were published in [9]. We studied BBN
under the variation of the fine-structure constant 𝛼, improving considerations made in earlier works,
e.g. in [19–23].

The fine-structure constant 𝛼 appears everywhere in BBN where electromagnetic interactions
are relevant. The most prominent effect is the Coulomb barrier that has to be overcome when two
positively charged particles interact. This barrier can be parameterized as an energy-dependent
“penetration factor” [24] in the cross section that depends on 𝛼 exponentially. One needs to
consider this Coulomb barrier penetration for the incoming and outgoing particles, given that they
are charged. For radiative capture reactions, i.e. for reactions with a photon in the final state, there
is no final-state penetration factor, of course, but a factor of 𝛼 appearing in the cross section from
the photon coupling. Additional factors parameterizing effects from external capture processes are
described in more detail in [20] and references therein. A smaller effect on primordial abundances
have final-state Coulomb interactions in 𝛽-decays: the electron or positron that is created interacts
with the daughter nucleus, resulting in a linear 𝛼-dependence of the decay rate. The same applies
also to the free neutron decay, which results in a variation of the neutron lifetime. Apart from direct
𝛼 dependencies of the rates, there are also indirect effects to consider. First, there is a Coulomb
contribution to the nuclear binding energies that changes linearly with 𝛼. For heavier nuclei the
Bethe-Weizsäcker formula [25] is a good enough approximation, but for light nuclei, which are most
relevant for BBN, it is not so precise. Therefore, we used values for the Coulomb contributions that
were calculated in the framework of Nuclear Lattice Effective Field Theory (NLEFT) and provided
to us by S. Elhatisari [26]. Changing the nuclear binding energies changes their masses and thus the
reaction 𝑄-value, i.e. the mass difference of in- and outgoing particles. This 𝑄-value appears also
in the Coulomb penetration factor of the cross section. Finally, the neutron-proton mass difference
has a QED contribution that was recently updated in [27]. Changing the neutron-proton mass
difference has a sizeable effect on the weak 𝑛 ↔ 𝑝 reaction rates and the neutron to proton number
density ratio. All these considerations, differences to earlier literature and the individual sizes of
different effects were laid out in detail in [9].

After implementing all these changes into the five codes and simulating BBN for 𝛼 varying by
±10%, we find the results displayed in fig. 1. There are reliable experimental values available only
for Helium-4, deuterium and Lithium-7 [1]. Lithium-7 is not suited for finding constraints on the
𝛼 variation because its theoretically predicted value is three times higher than the observed one,
a phenomenon called the “Lithium problem” [28]. The limits for 𝛿𝛼, the relative difference in 𝛼
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Figure 1: Primordial abundance for Helium-4 (left) and deuterium (right) calculated with five different codes
(blue: AlterBBN, green: PRyMordial, red: PRIMAT, pink: PArthENoPE, violet: NUC123) and compared to
available experimental values from the PDG [1] with 1𝜎 error band (yellow band). Here, 𝛿𝛼 is the relative
𝛼 variation.

can be derived by finding the minimally and maximally possible values for which the calculated
abundances are still within uncertainties of the experiment. We could constrain |𝛿𝛼 | < 1.8% which
is narrower that what was found in earlier works.

The main uncertainty in these considerations comes from the nuclear reaction rates. We
could already improve upon earlier works by parameterizing the most relevant cross sections by
performing fits to experimental data in [9] so that we could properly include the energy-dependent
penetration factor in our calculations. Still, apart from the 𝑛 + 𝑝 → 𝑑 + 𝛾 reaction cross section, for
which a pionless effective field theory (EFT) approach was derived in [29], no reliable theoretical
predictions for reaction rates were implemented into the codes. This led to our following work on
finding the 𝛼-dependence of radiative capture rates found in the Halo EFT framework [10] (for a
review on Halo EFT see [30]). The relevant rates all included Lithium-7 or Beryllium-7, and they
diverged for 𝛿𝛼 < −5%. While this had no noticeable effect on the other abundances, the 7Li + 7Be
abundance also diverges, see fig. 2. We have yet to understand if this result is indeed physically
relevant or simply an artefact of the Halo EFT approach that might not be applicable at certain
values of 𝛼 (including changing binding energies).

4. Variation of the Higgs VEV

In the second part of my talk I presented our recent results for varying the Higgs VEV in Big
Bang Nucleosynthesis [11]. This work was mainly inspired by [31]. Keeping the Yukawa couplings
fixed, all elementary particle masses depend linearly on the Higgs VEV and changing the latter has
a number of effects in BBN. Burns et al. [31] were the firsts to consider changes in the QCD scale
ΛQCD due to changes in the Higgs VEV. We implemented the following changes into our BBN
simulation:

• The QCD-scale scales with ΛQCD ∝ (1 + 𝛿𝑣)0.25 [31].
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Figure 2: Primordial abundance for Lithium-7 and Beryllium-7 calculated with five different codes (blue:
AlterBBN, green: PRyMordial, red: PRIMAT, pink: PArthENoPE, violet: NUC123)and compared to the
experimental values from the PDG [1] with 1𝜎 error band (yellow band).

• Because the 𝑊-boson mass also depends on the Higgs VEV, the Fermi constant relevant for
weak reactions changes: 𝐺𝐹 ∝ (1 + 𝛿𝑣)−2.

• The electron mass changes in the electron-neutrino plasma and weak interactions.

• The quark masses vary with the Higgs VEV. Through the Gell-Mann Oakes-Renner relation
this is equivalent to a change in the pion mass. This affects in turn

– the QCD part of the neutron-proton mass difference [27],

– the deuteron binding energy (see fig. 3) and other nucleon-nucleon scattering parameters
(we derived the dependencies using lattice QCD data [32–40] and low energy theorems
[41, 42]),

– and the nucleon mass and axial vector coupling (the dependence given by lattice QCD
calculations [43–45]).

Plugging all of these changes into pionless EFT cross section for the 𝑛 + 𝑝 → 𝑑 + 𝛾 reaction
derived in [29], we found that especially changing the deuteron binding energy has a siezable
effect on the 𝑛 + 𝑝 → 𝑑 + 𝛾 rate, which in turn affects the deuteron abundance immensly. A final
effect that we had to add into this calculation in our recent erratum to [11], is that changing the
deuteron binding energy affects also the backwards reaction 𝑑 + 𝛾 → 𝑛 + 𝑝 and therefore shifts the
time when BBN starts (deuterium bottleneck). In fig. 5, these updated results for the Helium-4 and
deuterium abundances are shown. This time, we also used the newest observation by the EMPRESS
collaboration [46] to find constraints for the Helium-4 abundance.

Especially the deuterium abundance varies drastically with the Higgs VEV and so only a Higgs
VEV variation of −0.07% ≤ 𝛿𝑣 ≤ −0.02% is consistent with experiment. These bounds are much
stronger than what was found in earlier works.
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Figure 3: Deuteron binding energy as a function of
the Higgs VEV calculated using lattice QCD data
and low energy theorems.

Figure 4: The 𝑛 + 𝑝 → 𝑑 + 𝛾 reaction rate for a
Higgs VEV variation of +10% (red, solid) and −10%
(red, dashed) compared to the original rate from [29]
(black) and the approximation made in [31] that the
rate scales like ∝ (1 + 𝛿𝑣)0.25 (green band).
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Figure 5: Helium-4 (left) and deuterium abundance (right) calculated with the PRyMordial code as a
function of the relative difference in the Higgs VEV, compared to experimental values by the PDG [1] and
the EMPRESS collaboration [46].

5. Conclusion and Outlook

We used five different publicly available codes to simulate BBN under the variation of both
the fine-structure constant and the Higgs VEV and found constraints on these variations from
comparing the simulated light element abundances to experimental data. We found that for the
fine-structure constant only |𝛿𝛼 | < 1.8% and for the Higgs VEV only −0.07% ≤ 𝛿𝑣 ≤ −0.02%
would be consistent with measurement.

In future, it would be interesting to do a combined analysis of changing different fundamental
constants at the same time or considering BBN under a varying strange quark mass (on-going). We
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are currently also working on a more quantitative and detailed error analysis of the past calculations.
As I mentioned, the main source of uncertainties are reaction cross sections and rates, so it would be
important to find more theoretical predictions for these rates to increase precision of these kinds of
analysis, especially as cosmological observations become more and more precise. We are therefore
currently working on implementing deuteron-deuteron reaction rates in the framework of NLEFT.
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