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Correcting for detector effects in experimental data, particularly through unfolding, is critical
for enabling precision measurements in high-energy physics. However, traditional unfolding
methods face challenges in scalability, flexibility, and dependence on simulations. We introduce a
novel approach to multidimensional object-wise unfolding using conditional Denoising Diffusion
Probabilistic Models (cDDPM). Our method utilizes the cDDPM for a non-iterative, flexible
posterior sampling approach, incorporating distribution moments as conditioning information,
which exhibits a strong inductive bias that allows it to generalize to unseen physics processes
without explicitly assuming the underlying distribution. Our results highlight the potential of
this method as a step towards a “universal” unfolding tool that reduces dependence on truth-
level assumptions, while enabling the unfolding of a wide range of measured distributions with
enhanced flexibility and accuracy.
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1. Introduction

Experimental data in high-energy physics (HEP) presents a distorted picture of the true physics
processes due to detector effects. Unfolding is an inverse problem solved through statistical inference
that aims to correct the detector distortions of the observed data to recover the true distribution
of particle properties. This process is essential for the validation of theories, new discoveries,
precision measurements, and comparison of experimental results between different experiments.

A standard approach to unfolding [1] begins with a predicted particle distribution 𝑓true(𝑥)
that characterizes the underlying physics process of interest, and a detailed detector simulation that
describes how detector effects distort the particle property distributions. These distortions affect the
kinematic quantities of particles incident to the detector, resulting in an altered particle distribution
𝑓det(𝑦). This relationship can be written as a Fredholm integral equation of the first kind,

𝑓det(𝑦) =
∫

𝑑𝑥 𝑃(𝑦 |𝑥) 𝑓true(𝑥) (1)

where 𝑃(𝑦 |𝑥) is the conditional probability distribution describing the detector effects. Unfolding
requires the inverse process 𝑃(𝑥 |𝑦), which can be expressed with Bayes’ theorem as

𝑃(𝑥 |𝑦) = 𝑃(𝑦 |𝑥) 𝑓true(𝑥)
𝑓det(𝑦)

. (2)

In this context, a detector dataset can be unfolded by sampling from the posterior 𝑃(𝑥 |𝑦) to
recover the distribution 𝑓true(𝑥). The detector effects 𝑃(𝑦 |𝑥) are assumed to be the same for any
physics process, and we can see that the posterior 𝑃(𝑥 |𝑦) depends on the prior distribution 𝑓true(𝑥).
Although we can sample from 𝑓true(𝑥) through the use of particle generators, there is no guarantee
that any particular assumed 𝑓true(𝑥) accurately represents the underlying physics of the specific
data we want to unfold. Consequently, unfolding results can be significantly influenced by the
assumed underlying distribution, potentially introducing bias or limiting the method’s ability to
detect unexpected phenomena. This reveals one of the main challenges in developing a universal
unfolder, which aims to remove detector effects from any set of measured data agnostic of the
process of interest, ideally with no bias towards any prior distribution. Additionally, traditional
unfolding methods, based on the linearization of the problem, face limitations such as requiring
binned histograms and an inability to unfold multiple observables simultaneously.

Related Work: Various machine learning approaches have emerged in recent years to address
these challenges. These include re-weighting methods like OmniFold [2] [3], as well as several
generative approaches. Among the generative techniques are those using Generative Adversarial
Networks (GANs) [4] [5], conditional invertible neural networks [6] [7], and latent variational
diffusion models [8] [9]. Additionally, distribution mapping techniques have been developed, such
as Schrödinger bridges [10] and direct diffusion models [11]. For a comprehensive overview of these
methods, see the recent survey by [12]. Each new method has made further strides in unfolding and
shown the advantages in machine learning based approaches compared to traditional techniques.
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Figure 1: Unfolding results for an “un-
known” process, comparing our generalized
cDDPM unfolder against the standard, ded-
icated unfolding approach.

Our Contribution: In this work, we introduce a novel
approach based on conditional Denoising Diffusion Prob-
abilistic Models (cDDPM) to unfold detector effects in
HEP data. We demonstrate that a single cDDPM, trained
on particle data from a diverse range of physics distribu-
tions and incorporating the statistical moments of these
distributions, can be used as a "generalized" unfolder to
perform multidimensional object-wise unfolding for a va-
riety of physics processes without requiring an explicit
assumption about the underlying distribution that could
bias the results. Figure 1 shows that this generalized
unfolder outperforms the standard "dedicated" unfolding
approach for unknown physics processes (details in Sec-
tion 3). This flexibility is crucial for new physics searches
and studying processes not accurately modeled by current
theories. Moreover, our approach eliminates the need for
process-specific model training, enabling the unfolding
of a million data points in approximately 3 minutes.

2. Methods

2.1 Our Unfolding Approach

Although we cannot achieve an ideal universal unfolder, we seek an approach that will enhance
the inductive bias of the unfolding method to improve generalization to cover various posteriors
pertaining to different physics data distributions. We can see that the posteriors for two different
physics processes 𝑖 and 𝑗 are related by a ratio of the probability density functions of each process,

𝑃𝑖 (𝑥 |𝑦)
𝑃 𝑗 (𝑥 |𝑦)

=
𝑓 𝑖true(𝑥) 𝑓

𝑗

det(𝑦)
𝑓 𝑖det(𝑦) 𝑓

𝑗
true(𝑥)

. (3)

Assuming we can learn the posterior for a given physics process, we could extrapolate to unseen
posteriors if the priors 𝑓true(𝑥) and detector distributions 𝑓det(𝑦) can be approximated or written in
a closed form. Although these functions have no analytical form, we can approximate key features
using the first moments of these distributions. By making use of these moments as conditionals, we
can have a more flexible unfolder that is not strictly tied to a selected prior distribution, and enables
it to interpolate and extrapolate to unseen posteriors. Consequently, this unfolding tool gains the
ability to handle a wider range of physics processes and enhances the generalization capabilities,
making it a more versatile tool for unfolding in various high energy physics applications.

2.2 Denoising Diffusion Probabilistic Models

Our proposed unfolding approach calls for a flexible generative model, and denoising diffusion
probabilistic models (DDPMs) [13] lend themselves naturally to this task. DDPMs learn via a
reversible generative process which we can condition directly on the simulated detector data values
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and on the moments of the distribution 𝑓det(𝑦), providing a natural way to sample from 𝑃(𝑥 |𝑦) for
unfolding. A DDPM comprises two parts: a fixed forward process that gradually adds Gaussian
noise to data samples, and a learned reverse process that denoises the data.

We implement a conditional DDPM (cDDPM) with direct conditioning, where sampling is
done according to the learned conditional distribution. The cDDPM allows us to sample from
𝑃(𝑥 |𝑦) without explicitly evaluating the prior distribution over the data space, making it a natural
choice for applications like unfolding where the prior is unknown or difficult to model.

2.3 Unfolding with cDDPMs

Our study focuses on QCD jets. Using the PYTHIA event generator [14], we generate jet
datasets for various physics processes (𝑡𝑡, 𝑊+jets, 𝑍+jets, dijet, and leptoquark) under different
settings. These "truth-level" jets are then passed through a detector simulation framework to
produce "detector-level" jets, mimicking particle interactions within a detector.

Part 1: Dedicated Unfolder We first consider how to setup a dedicated cDDPM unfolder (without
use of the distributional moments) that can achieve multidimensional object-wise unfolding for a
single physics process. The jet kinematic information is defined with a vector that includes the
transverse momentum (𝑝𝑇 ), pseudorapidity (𝜂), azimuthal angle (𝜙), and 4-momentum vector
(𝐸, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧). These jet vectors are defined both at truth-level as ®𝑥 and detector-level as ®𝑦. A
cDDPM can be trained with data pairs (®𝑥, ®𝑦) as input to learn the posterior distribution 𝑃(®𝑥 | ®𝑦). To
unfold, we give the detector data ®𝑦 as input and the cDDPM acts as a posterior sampler of 𝑃(®𝑥 | ®𝑦).

Part 2: Generalized Unfolder We aim to enhance the inductive bias through use of the dis-
tributional moments to attain a generalized cDDPM unfolder that encompasses a broader range
of posteriors, enabling the unfolding of data from diverse physics processes. To achieve this, we
expand our training dataset to include jets from multiple different physics simulations. For each
simulation, we compute the first 6 moments of the 𝑝𝑇 distribution and append them to the corre-
sponding jet vectors. We use the first 6 moments as our tests showed this to be the minimum number
yielding optimal results. In slight abuse of notation, we now denote these augmented jet vectors
(including distribution moments) as ®𝑥 at truth-level and ®𝑦 at detector-level. By training with these
diverse data pairs (®𝑥, ®𝑦), we enable the cDDPM to represent multiple posteriors corresponding to
the distributions in the expanded training dataset, distinguishable through the added distributional
information provided by the moments.

3. Results and Discussion

To evaluate our unfolding approach, we employ the Wasserstein distance [15] as a metric,
comparing the discrepancy between truth and unfolded values against that of truth and detector
values. Figure 1 showcases results from an "unknown" process dataset, created by combining jets
from the 𝑡𝑡, 𝑊+jets, and leptoquark test datasets. Our generalized unfolder demonstrates superior
performance when unfolding this unknown process compared to a dedicated unfolder assuming a
similar, yet incorrect, underlying 𝑡𝑡 process. While the generalized unfolder’s advantage is expected
for unknown processes, we also aim for comparable performance to dedicated unfolders on known
processes. To validate our framework’s effectiveness we compare both unfolders across various test
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Figure 2: Unfolding results of jet vector components across diverse physics processes. We compare our
generalized cDDPM unfolder (orange) against process-specific dedicated unfolders (green). Deviations from
one are within the expected uncertainty budget typical of experimental measurements of these distributions.

datasets, and Table 1 presents the resulting multidimensional Wasserstein distances to their true
distributions.

Figure 2 illustrates unfolding results for various jet observables across different physics pro-
cesses, showcasing the generalized unfolder’s versatility. In Figure 3, the model’s efficacy is further
demonstrated with two tests: (1) reconstructing jet mass from unfolded results, indicating well-
preserved correlations among jet vector components, and (2) reconstructing event-level observables
from unfolded quantities, achieved by tracking event numbers through object-wise unfolding.
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Figure 3: Reconstruction of jet mass and hadronic recoil
(event-level observable) from unfolded data.

Process
Wasserstein Distances
Det. Gen. Ded.

Unknown 28.20 0.744 2.677
𝑡𝑡 26.43 0.565 0.196
LQ 32.72 0.457 0.155
W+jets 31.15 0.304 0.353

Table 1: Comparison of Wasserstein dis-
tances for detector-level data and unfolded
results using generalized and dedicated un-
folders across different physics processes.

While this approach shows promise, we acknowledge key limitations. Addressing particles
outside detector thresholds and accounting for systematic and experimental uncertainties are crucial
improvements needed to fully realize the method’s potential in practical applications. An important
constraint of our current implementation is that while correlations between object vector components
are preserved, the model lacks access to event-wise information which impacts the reconstruction
accuracy of certain event-level observables. We leave these improvements for future work.

To conclude, our results confirm the versatility of the generalized cDDPM unfolder across
diverse physics processes. This non-iterative and flexible posterior sampling approach exhibits a
strong inductive bias that allows the cDDPM to generalize to unseen processes without explicitly
assuming the underlying distribution, setting it apart from other unfolding techniques so far.
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