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1. Introduction

Machine learning, a wide-spread topic in many fields of research and industry, has gained popularity
with the advent of neural networks (NN) and modern hardware accelerators such as GPUs, FPGAs
and ASICs. The experiments at the LHC continue to make heavy use of the industry leading
frameworks and model architectures in reconstruction and calibration of the data taken during Run
3 of the LHC (2021 - present). These proceedings will outline some of the applications, following
the typical flow of data from cluster-level to track-level applications and finally calibrations, tagging
and triggering.

2. Cluster-level applications

Cluster-level applications utilize direct detector output without incorporating global track informa-
tion. These algorithms primarily access local cluster or digit data, along with the detector’s local
position and geometry.

ALI-SIMUL-569932

Figure 2.1: Reduction in fake-rate by the
NN at same clusterization efficiency as the
current GPU clusterizer (dashed line).

A first application of neural networks on a digit level
is applied in a novel approach to clusterization of the
TPC readout by the ALICE collaboration. With its fully
GPU based online reconstruction in Run 3 [1], ALICE
is ideally suited for the application of parallelizable ar-
chitectures, such as neural networks. Clusterization is
performed with a cluster rejection and a regression NN
around measured charge maxima. Fully connected and
3D convolutional architectures show promising results in
terms of physics performance for clusterization efficiency
and fake-rate (fig. 2.1) compared to the current GPU clus-
terizer based on the cellular automaton approach. With
its local 3D input (row, pad and time dimension), the out-
put of the clusterizer can even be optimised in training
using real data and tracks alongside Monte-Carlo generated data.

Figure 2.2: CICADA scores compared to
other triggers deployed at CMS.

However 3D information is computationally expensive
and not always available. An approach to detect anoma-
lous events on 2D calorimeter images is provided by CMS
with its calorimeter Image Convolution Anomaly Detec-
tion Algorithm (CICADA) [2]. It is trained to produce
low mean square error outputs for zero bias events (which
it has been trained on) and large outputs for anomalous
events. Its trigger rate coincides remarkably well with
other triggers deployed in CMS such as single-𝜏 or single-
jet triggers with an energy greater than 180 GeV (fig. 2.2).
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3. Track-level applications

Building on cluster-level data, tracking algorithms can provide final, calibrated tracks after the
reconstruction is run. Several approaches are possible, including full NN-based track reconstruction,
as investigated by LHCb for VELO-only and long tracks. It is based on a classification of edges
and triplets (edge-edge connections), with edges corresponding to connections between pairs of hits
[3]. The hits and edges can be represented as a graph and processed using Graph Neural Networks
(GNNs), which provide good computational scalability as hit multiplicities increase. Compared to
the default algorithm used in the Allen software framework, the GNN approach brings a similar
efficiency with an improved reconstruction of electron tracks and a lower fake-rate (fig. 3.1).

(a) (b)

Figure 3.1: Efficiencies, clone rates and purities for long tracks (a) and Velo-only tracks (b).

Such applications demonstrate the power of NNs but are computationally expensive. A higher level
approach can be taken by classifying which pre-built track segments should be connected to track
candidates, as investigated by the CMS collaboration for the inner and outer tracker layers, to build
T5 (5-cluster) from T3 (3-cluster) track segments [4]. Improved tracking efficiency (fig. 3.2a) with
a reduced fake-rate (fig. 3.2b) is found compared to tracking without the NN for all primary vertex
positions and particularly for the central rapidity region (𝜂 ≤ 2).

(a) (b)

Figure 3.2: Comparison of tracking efficiency (a) and fake-rate (b) with and without the NN.

Once final tracks have been built, NNs can further improve primary vertex (PV) finding by processing
the tracks in an event, as shown by a collaborative effort between ATLAS and LHCb [5]. A first
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approach was taken by performing a kernel density estimation (KDE) on the number of tracks
crossing the beamline along the z-direction and a convolutional NN identifying PV candidates (fig.
3.3). It was found that fully connected NNs outperform the KDE approach using additional tracking
information with at most 250 tracks and 9 parameters per track. This is transformed to a latent
space encoding of (8 x 100) output channels x 40 outputs / event which is further processed by
a U-Net architecture. The final output are 100 x 40 channels per event which represent primary
vertex candidates in bins of 100 𝜇m steps along the z-direction with a total coverage of z ∈ [-100
mm, 300 mm]. Ultimately, this represents a full tracks-to-hist classification with NNs, achieving
significantly improved false positive rates compared to the previous KDE approach.

(a) (b)

Figure 3.3: NN architecture for PV finding (a) and corresponding efficiency vs. false-positive rate for
different architectures and approaches (b).

4. Tagging, triggering, PID and calibrations

An application of fully connected NNs for the jet 𝑝T calibration is performed by ATLAS with a
global neural network based calibration (GNNC) for small-R jets [6]. Sequential, multiplicative
corrections (global sequential calibration, GSC) based on 6 informative jet variables are replaced
with a neural network approach with 13 inputs. Especially at low transverse momenta, the neural
network approach shows significant improvements of the jet-𝑝T response compared to the Monte-
Carlo ground truth. This can be explained as the GNNC approach is not bound to decorrelated
corrections but can take multi-variable correlations across a high dimensional input-space into
account (fig. 4.1). This also leads to slight improvements in the flavour response and composition
uncertainty of the jet.

(a) (b) (c)

Figure 4.1: Jet-𝑝T response (a), flavour response uncertainty (b) and flavour composition uncertainty (4.1c)
against the MC truth 𝑝T of the jet for the GNNC and GSC approach.
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A recent architecture in research and industry, the transformer model, finds application in the CMS
ParticleTransformerAK4 [7], which is tuned for anti-𝑘𝑇 jets with a radius parameter of 0.4. Its
performance surpasses the heavy flavour jet tagging capabilities of the previous DeepJet DNN
architecture in all 𝑝T intervals and for all flavours (charm, beauty and up-down-strange-gluon). The
transformer model is particularly well suited for jet tagging as it can take into account the full jet
information in a single pass and is not bound to a fixed input size. This allows for a more flexible and
versatile approach to jet tagging and calibration. The augmented attention mechanism for flavour
jet tagging in the ParticleTransformerAK4 model is shown to be particularly powerful in the low
𝑝T regime (fig. 4.2).

(a) (b)

Figure 4.2: Architecture (a) and performance (b) of the ParticleTransformerAK4 model for jet tagging.

A comparison of different model architectures was performed for point-cloud based data by ATLAS
for pion identification [8]. The transformer architecture here shows a significantly improved perfor-
mance compared to any other architectures which further signifies its versatility and performance
(fig. 4.3).

(a) (b) (c)

Figure 4.3: Study and performance of different model architectures for pion identification at |𝜂 | < 0.7 (a),
|𝜂 | < 3 (b) and energy calibration (c) for point cloud based data in ATLAS.

Utilizing jet-constituent correlations, GNNs have also provided great utility for Lund-plane based
W tagging including an adversarial NN for jet mass decoupling [9]. Lund plane variables spanned
by individual two-particle contributions can be represented as a graph and lead to improvements in
background rejection and jet energy calibration by the GNN.
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In order to improve the robustness and interpretability (e.g. monotonicity) Lipschitz neural net-
works are utilized by LHCb in various applications of NN based tagging and triggering. A key
characteristic of these neural networks is their stability, where an additional, linear term in the loss
function ensures that all weights are constrained below a specified Lipschitz constant. This greatly
improves the stability of the prediction [10]. The application of such Lipschitz networks shows
significant improvements for inclusive heavy-flavour triggers and particularly for particles with long
flight paths (fig. 4.4).

(a) (b)

Figure 4.4: Comparison of triggering efficiency ratio for the hadronic decay channel 𝐵0 → 𝐷∗−𝜏+𝜈𝜏
hadronic with a regular NN (a) and a Lipschitz NN (b).

Figure 4.5: Improvement of the N𝜎 distributions for
cleanly selected electrons, pions, and protons from
pure Bethe-Bloch ratios (left) and with NN corrections
(right).

For offline calibrations, fully connected NNs
have shown great success for multidimensional
corrections to the Bethe-Bloch function for par-
ticle identification in the ALICE TPC [11].
Based on clean V0 selection, this approach
is fully data-driven and improves the previous
single-dimension, multiplicative corrections for
electrons, pions, kaons and protons (fig. 4.5).
Six track parameters are used as an input to
the model and two values are returned (mean
correction factor and 𝜎-estimation). This ap-
proach is fully utilized and deployed within the
collaboration and the Hyperloop train system
for offline data analysis in Run 3.
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5. Conclusion

In summary, the LHC experiments have made great strides in the application of machine learning
algorithms and neural networks in online and offline reconstruction and calibration. The applications
range from cluster-level to track-level applications and finally to calibrations, tagging and triggering.
The use of neural networks with a variety of architectures has shown significant improvements in
terms of physics performance and computational scalability to larger object multiplicities. The
experiments continue to push the boundaries of machine learning applications in high-energy
physics and are well positioned to take advantage of the latest developments in the field.
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