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1. Introduction

The discovery of the Higgs boson [1, 2] opens a new frontier in exploring electroweak (EW)
symmetry breaking and the Standard Model (SM). A key focus at the Large Hadron Collider (LHC)
is understanding Higgs self-interactions, which are crucial for probing the structure of the Higgs
potential. Higgs boson pair production, directly linked to the Higgs trilinear coupling 𝜆𝐻𝐻𝐻 ,
provides a unique window into this domain. While current LHC data begin to constrain 𝜆𝐻𝐻𝐻

[3–5], deviations from the SM prediction could imply modifications to the Higgs potential.
The dominant production mode for Higgs pairs at the LHC is gluon-gluon fusion, a loop-

induced process in the SM. This makes precise theoretical predictions challenging, requiring
advanced techniques beyond leading order (LO). Significant progress has been made, including
next-to-leading order (NLO) QCD calculations [6–9], the incorporation of soft-gluon resummation
and parton shower effects [10–13], and even next-to-next-to-next-to-leading order (N3LO) QCD
corrections within the heavy top-quark limit [14, 15].

Different from QCD corrections, the Higgs self-couplings receive corrections from high order
electroweak (EW) corrections. In addition, EW corrections, driven by Sudakov logarithms [16, 17],
are particularly significant at high energies. However, calculating NLO EW corrections for 𝑔𝑔 →
𝐻𝐻 is exceptionally complicated, as it involves two-loop diagrams with multiple mass scales.
Previous attempts [18–23] have provided partial results.

In this proceeding, we present a complete computation of NLO EW corrections to 𝑔𝑔 → 𝐻𝐻,
accounting for all two-loop diagrams and mass effects. Our results aim to enhance the precision of
theoretical predictions, addressing a long-standing goal in the community [24–28].

2. Calculation

NLO EW corrections for 𝑔𝑔 → 𝐻𝐻 include only virtual contributions, due to the prohibition of
𝑔𝑔 → 𝐻𝐻𝛾 by the Furry Theorem. The two-loop Feynman diagrams and amplitudes are generated
using FeynArt [29], with representative diagrams shown in Fig. 1.

Figure 1: Representative Feynman diagrams for 𝑔𝑔 → 𝐻𝐻 at LO (𝑎) and NLO EW corrections (𝑏- 𝑓 ).
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LO squared matrix elements are obtained with the help of MadGraph5 [30], and LO events are
generated using Parni [31]. NLO results are obtained by reweighting the LO events. Specifically,
NLO amplitudes are expressed as linear combinations of scalar integrals using CalcLoop [32],
categorized into 3 (116) integral families for 1-loop (2-loop) contributions. These are further
reduced to master integrals with Blade [33]. Master integrals are numerically solved via differential
equations with respect to the Mandelstam variables 𝑠 and 𝑡, using boundary conditions from AMFlow
[34].

To simplify computations, we set 𝜖 = ±1/1000 in our calculation. This can avoid Laurent
expansions and reducing resource demands, as proposed in Refs. [34]. The results based on both
𝜖 = ±1/1000 can be used to check divergence cancellations and further mitigate the error caused
by the finite 𝜖 effect.

3. Results

The total cross sections for the gluon-gluon fusion channel of 𝑝𝑝 → 𝐻𝐻 at LO and NLO are
presented in Tab. 1, where three different renormalization/factorization scales are used. The scale
dependence of the strong coupling 𝛼𝑠 is the primary source of the observed ∼ 20% uncertainties
at both LO and NLO. In contrast, the K-factor remains stable with different 𝜇 choices. The
consistent NLO EW correction, ranging from −4.6% to −4.2%, indicates that higher-order EW
effects contribute only a few per mille to the total cross section.

𝜇 𝑀𝐻𝐻/2
√︃
𝑝2
𝑇
+ 𝑚2

𝐻
𝑚𝐻

LO 19.96(6) 21.11(7) 25.09(8)

NLO 19.12(6) 20.21(6) 23.94(8)

K-factor 0.958(1) 0.957(1) 0.954(1)

Table 1: LO and NLO EW corrected integrated cross sections (in fb) with
√
𝑠 = 14 TeV. The uncertainties

arise from statistical errors in phase space integration.

In Fig. 2, we present the invariant mass distribution of the Higgs pair, 𝑀𝐻𝐻 , taken from
different literatures. The upper left plot is based on our calculation, which incorporates complete
NLO EW corrections. The upper right plot is from [19], based on Top-Yukawa-induced corrections.
The lower left plot is from [23], containing both Yukawa and Higgs self-coupling type corrections.
The lower right plot is from [22], which includes Higgs self-coupling type corrections.

We observe that 𝑀𝐻𝐻 receives significant corrections at the 𝐻𝐻 production threshold in these
plots. The two plots on the right-hand side suggest that Top-Yukawa-induced corrections and Higgs
self-coupling type corrections have opposite signs in the threshold region. The combination of
these two contributions gives positive corrections at the 𝐻𝐻 production threshold, as shown in the
lower left plot, which amount to approximately ∼ 30%. Our calculation shows that the complete
NLO EW correction is about ∼ 15% with the binning we selected. The two plots on the left-hand
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side indicate that the gauge boson contributions are negative and important, as also pointed out in
Ref. [23].
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Figure 2: Invariant mass distribution of the Higgs pair. The upper left plot is based on our calculation, the
upper right plot is taken from [19], the lower left plot is taken from [23] and the lower right plot is taken from
[22].

4. Conclusion

We review the recent progress in the calculation of NLO EW corrections to double Higgs
production at the LHC. The complete NLO EW corrections are about +4% at the total cross section
level and range from −10% to +15% at the differential level.
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