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TMD phenomenology motivated by nonperturbative structures Ted Rogers

1. Introduction

I will structure these proceedings as follows: To establish context, I will briefly review the basic
setup of TMD factorization for Drell-Yan scattering. Next, I will review the most common steps
used to construct parametrizations of TMD pdfs in phenomenological implementations and discuss
some of their advantages and disadvantages. Then, I will summarize our proposed modifications
from Refs. [1, 8, 9]. I will organize the remainder of the proceedings around answering questions
that arose in the context of the talk.

A familiar example of a TMD factorization formula is the one for unpolarized Drell-Yan
scattering [4],

d𝜎
d4𝑞 dΩ

= H(𝑄0, 𝑄0/𝜇𝑄0)×

×
∫

d2𝒌𝑎T d2𝒌𝑏T 𝑓 𝑗/ℎ𝑎 (𝑥𝑎, 𝒌𝑎T; 𝜇𝑄0 , 𝑄
2
0) 𝑓 𝚥/ℎ𝑏 (𝑥𝑏, 𝒌𝑏T; 𝜇𝑄0 , 𝑄

2
0)𝛿

(2) (𝒒T − 𝒌𝑎T − 𝒌𝑏T) , (1)

with TMD pdfs 𝑓 𝑗/ℎ𝑎 (𝑥𝑎, 𝒌𝑎T; 𝜇𝑄0 , 𝑄
2
0) and 𝑓 𝚥/ℎ𝑏 (𝑥𝑏, 𝒌𝑏T; 𝜇𝑄0 , 𝑄

2
0) describing longitudinal mo-

mentum fractions and transverse momenta for the incoming partons in each hadron ℎ𝑎 and ℎ𝑏. There
is also a hard factor H and a sum over all parton flavors. Apart from the dependence on auxiliary
variables associated with evolution, Eq. (1) has exactly the form of a TMD parton model with a
clear hadron structure interpretation. (For brevity, power suppressed errors, sums over flavors, and
a 𝑌 -term correction for 𝑞T ≈ 𝑄0 are not written explicitly.) The renormalization and Collins-Soper
(CS) scales are normally written as generic scales 𝜇 and

√
𝜁 , but since we have physical applications

in mind I express them with physical input scales 𝜇𝑄0 and 𝑄0, fixed to 𝜇𝑄0 ∝ 𝑄0 from the outset.
It is often the case that one prefers to express Eq. (1) in terms of transverse coordinate space

TMDs where implementing evolution becomes simple,

d𝜎
d4𝑞 dΩ

= H(𝑄0, 𝑄0/𝜇𝑄0)
∫

d2𝒃T

(2𝜋)2 𝑒
𝑖𝒒ℎT ·𝒃T 𝑓 𝑗/ℎ𝑎 (𝑥𝑎, 𝒃T; 𝜇𝑄0 , 𝑄

2
0) 𝑓 𝚥/ℎ𝑏 (𝑥𝑏, 𝒃T; 𝜇𝑄0 , 𝑄

2
0) . (2)

The formulas above are written for the case of scales near the input scale, 𝑄0, which is understood
to be the lowest scale for which TMD factorization is considered reasonable. To relate them to
higher 𝑄 requires solving evolution equations [4],

𝜕 ln 𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄, 𝜁)
𝜕 ln

√
𝜁

= 𝐾̃ (𝑏T; 𝜇) , (3)

d𝐾̃ (𝑏T; 𝜇)
d ln 𝜇

= − 𝛾𝐾 (𝛼𝑠 (𝜇)) , (4)

d ln 𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄, 𝜁)
d ln 𝜇

= 𝛾(𝛼𝑠 (𝜇); 𝜁/𝜇2) = 𝛾(𝛼𝑠 (𝜇); 1) − 𝛾𝐾 (𝛼𝑠 (𝜇))
1
2

ln
(
𝜁

𝜇2

)
. (5)

Here, 𝛾 and 𝛾𝐾 are perturbatively calculable anomalous dimensions and 𝐾̃ (𝑏T; 𝜇) is the CS kernel,
which is perturbatively calculable at small 𝑏T, but is nonperturbative in the large-𝑏T limit. In
𝑏T-space, the exact solution to Eqs. (3)–(5) for all 𝑏T is simple, and the factorized cross section at
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TMD phenomenology motivated by nonperturbative structures Ted Rogers

an arbitrary 𝑄 becomes

d𝜎
d4𝑞 dΩ

= H(𝑄,𝑄/𝜇𝑄)∫
d2𝒃T

(2𝜋)2 𝑒
𝑖𝒒ℎT ·𝒃T 𝑓 𝑗/ℎ𝑎 (𝑥𝑎, 𝒃T; 𝜇𝑄0 , 𝑄

2
0) 𝑓 𝚥/ℎ𝑏 (𝑥𝑏, 𝒃T; 𝜇𝑄0 , 𝑄

2
0)𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏T)2 .

(6)

with only a multiplicative evolution factor

𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏T)2

= exp

{
𝐾̃ (𝑏T; 𝜇𝑄0) ln

(
𝑄2

𝑄2
0

)
+

∫ 𝜇𝑄

𝜇𝑄0

d𝜇′

𝜇′

[
2𝛾(𝛼𝑠 (𝜇′); 1) − ln

(
𝑄2

𝜇′2

)
𝛾𝐾 (𝛼𝑠 (𝜇′))

]}
. (7)

(The square on 𝐸 is present because there is an evolution factor for each TMD pdf.) Therefore,
knowledge of the TMD pdfs and the CS kernel at an input scale and for all 𝑏T, along with
perturbative calculations of the anomalous dimensions, is enough to determine the TMD pdfs and
the cross section at any higher scales.

To obtain expressions for the TMD pdfs at 𝑘T ≈ 𝑄0 or higher (or at 𝑏T ≲ 1/𝑄0 in coordinate
space), one also normally takes advantage of the ability to use collinear factorization to describe
the perturbative tail, or in terms of the small-𝑏T limit to use an operator product expansion,

𝑓 𝑗/ℎ (𝑥, 𝑏𝑇 ; 𝜇𝑄0 , 𝑄
2
0) =

∫ 1

𝑥

d𝜉
𝜉
𝐶̃ 𝑗/𝑘 (𝑥/𝜉, 𝑏𝑇 ; 𝜇𝑄0 , 𝑄

2
0, 𝛼𝑠 (𝜇𝑄0)) 𝑓𝑘/𝑝 (𝜉; 𝜇𝑄0) +𝑂

(
𝑏𝑇ΛQCD

)𝑎
,

(8)

where 𝐶̃ 𝑗/𝑘 is a hard coefficient and 𝑎 > 0. The only logarithmic behavior in the perturbative
expression for 𝐶̃ 𝑗/𝑘 is of the form ln𝑛 (𝑏T𝑄0), so using Eq. (8) directly in calculations is already
optimal for 𝑄 ≈ 𝑄0 where the only relevant perturbative region of 𝑏T occurs at 𝑏T ≈ 1/𝑄0. By
definition, all larger regions of 𝑏T are to be considered nonperturbative. However, after one evolves
to 𝑄 ≫ 𝑄0, the 𝑏T ≪ 1/𝑄0 region starts to become important, and the ln𝑛 (𝑏T𝑄0) terms grow
unacceptably large. To account for this, one normally performs another scale transformation on
𝑓 𝑗/ℎ (𝑥, 𝑏𝑇 ; 𝜇𝑄0 , 𝑄

2
0) in the 𝑏T ≪ 1/𝑄0 region from (𝜇𝑄0 , 𝑄0) →∼ 1/𝑏T via another application of

Eqs. (3)–(5).
The abstract set of steps summarized above are made concrete in applications by replac-

ing the various pieces with a combination of perturbative approximations and nonperturbative
parametrizations. The details of the different ways this is done in practice come with advantages
and disadvantages depending on the specific goals, to be discussed below.

2. 𝑏∗ method with 𝑔-function prescription

A basic task is to fix a method for merging nonperturbative descriptions of transverse momen-
tum dependence with perturbative descriptions. In transverse coordinate space, that amounts to
matching large-𝑏T nonperturbative descriptions of 𝑓 𝑗/ℎ (𝑥, 𝑏𝑇 ; 𝜇𝑄0 , 𝑄

2
0) and 𝐾̃ (𝑏T; 𝜇) onto small-𝑏T

perturbative calculations.
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The most common way of organizing the separation is the 𝑏∗-prescription [5, 6]. It is motivated
by a desire to separate out a factor that one can view as strictly perturbative, in the sense that it
is only sensitive to small-𝑏T behavior and has zero or only minimal sensitivity to parameters that
are meant to describe truly nonperturbative transverse momentum dependence. In other words, the
perturbatively describable transverse coordinate dependence is to be quarantined from explicitly
nonperturbative models of transverse coordinate dependence. The way it is implemented is by
introducing an arbitrary function that freezes 𝒃T when 𝑏T → ∞,

𝒃∗(𝑏T) =
{
𝒃T 𝑏𝑇 ≪ 𝑏max

𝒃max 𝑏𝑇 ≫ 𝑏max
, (9)

with 𝑏max understood to mark a boundary between what will be treated perturbatively and what
will be considered nonperturbative regions of 𝑏T dependence. (Thus, 𝑏max ≲ 1/𝑄0.) The most
common realization of Eq. (9) is

𝒃∗(𝑏T) =
𝒃T√︃

1 + 𝑏2
T/𝑏

2
max

, (10)

though any function that satisfies Eq. (9) is acceptable, and others have been used in practice. The
TMD pdfs at the input scale are then written as

𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄
2
0) = 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0)

(
𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0)

𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄
2
0)

)
. (11)

The factor in front is still just the coordinate space TMD pdf, but now it is only ever evaluated at
𝑏T < 𝑏max, so we anticipate using collinear factorization to calculate it. The factor in parentheses
vanishes like a power of 𝑏T at small 𝑏T, so we label it as being the “nonperturbative” contribution.
It is conventionally written in the form of an exponential of a function, so that

𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄
2
0) = 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0)𝑒

−𝑔 𝑗/ℎ (𝑥,𝑏T ) (12)

with

𝑔 𝑗/ℎ (𝑥, 𝑏T) ≡ − ln

(
𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0)

𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄
2
0)

)
. (13)

The 𝑔 𝑗/ℎ (𝑥, 𝑏T) function depends on the choice of input scale 𝑄0 and on the form of 𝑏∗, but it is
otherwise scale-independent.

As long as there is negligible sensitivity to the very small 𝑏T ≪ 1/𝑄0 region, the form of
Eq. (12) is sufficient to allow one to treat the overall factor 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0) using collinear

factorization. However, if we ultimately plan to evolve to such large 𝑄 that the 𝑏T ≪ 1/𝑄0 limit
becomes accessible, then we must transform the scales in 𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0) once more by writing

𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄
2
0) = 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑏∗ , 𝜇2

𝑏∗
)𝐸 (𝜇𝑄0/𝜇𝑏∗ , 𝑄0/𝜇𝑏∗ , 𝜇𝑏∗𝑏∗) , (14)

where we have defined the scale
𝜇𝑏∗ ≡ 𝐶1/𝑏∗ , (15)
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and 𝐶1 is a constant with size comparable to 1. Then, 𝑓 𝑗/ℎ (𝑥, 𝑏∗(𝑏T); 𝜇𝑏∗ , 𝜇2
𝑏∗
) is perturbatively

very well behaved as 𝑏T → 0. The factors in front of 𝑒−𝑔 𝑗/ℎ (𝑥,𝑏T ) are never evaluated at 𝑏T above
𝑏max, so one may choose 𝑏max to be small enough that the 𝑂

(
𝑏maxΛQCD

)𝑎 errors in Eq. (8) are
negligible. Thus, we write Eq. (12) as

𝑓OPE, 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑏∗ , 𝜇2
𝑏∗
)𝐸 (𝜇𝑄0/𝜇𝑏∗ , 𝑄0/𝜇𝑏∗ , 𝜇𝑏∗𝑏∗)𝑒−𝑔 𝑗/ℎ (𝑥,𝑏T ) +𝑂

(
𝑏maxΛQCD

)𝑎
, (16)

where the OPE subscript symbolizes the first term in Eq. (8).
Isolating the nonperturbative part of the CS kernel is done in a way similar to the treatment of

the TMD pdf itself. The evolution factor in the cross section, Eq. (6), is rewritten in the form

𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏T) = 𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏∗)
𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏T)
𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏∗)

= 𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏∗) exp
{
−

[
𝐾̃

(
𝑏∗; 𝜇𝑄0

)
− 𝐾̃

(
𝑏T; 𝜇𝑄0

) ]
ln

(
𝑄

𝑄0

)}
. (17)

Now one uses the fact (from Eq. (5)) that scale dependence in Eq. (17) is 𝑏T-independent to identify
and define the quantity in brackets as a scale-independent function called 𝑔𝐾 (𝑏T). So the evolution
factor is

𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏T) = 𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏∗) exp
{
−𝑔𝐾 (𝑏T) ln

(
𝑄

𝑄0

)}
. (18)

Now 𝐸 (𝜇𝑄/𝜇𝑄0 , 𝑄/𝑄0, 𝜇𝑄0𝑏∗) is also never evaluated at 𝑏T > 𝑏max.1 Substituting Eq. (16) and
Eq. (18) into Eq. (6) reproduces the fully evolved cross section expression in the form that it is
usually presented.

In the above summary, all symbols are meant to be exact so, apart from possibly dropping the
𝑂

(
𝑏maxΛQCD

)𝑎 in Eq. (16), nothing has been done to Eq. (6) other than to shuffle around factors
arbitrarily. An implementation amounts to replacing these various pieces by approximations and
parametrizations. The perturbatively calculable parts are normally obtained by truncating beyond
some order, while in most approaches the nonperturbative functions 𝑔 𝑗/ℎ (𝑥, 𝑏T) and 𝑔𝐾 (𝑏T) are
replaced by nonperturbative ansatzes, which are then fit to data.

Organizing the steps in this way has at least the following major advantages:

1.) The final 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄
2
0) is restricted to perturbatively small values of 𝑏T. Calculating

it using perturbative collinear factorization with the OPE involves no sensitivity to genuinely
nonperturbative parameters, since changing 𝑏∗(𝑏T) or the value of 𝑏max only amounts to
shifting contributions between 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0) and 𝑔 𝑗/ℎ (𝑥, 𝑏T). Analogous statements

are true for the connection between 𝐾̃ (𝑏∗; 𝜇𝑄0) and 𝑔𝐾 (𝑏T).

At least formally, therefore, the goal of isolating “purely perturbative” contributions is
achieved with this prescription. In the final expression for the cross section, the only sensitiv-
ity to 𝑏∗(𝑏T) or 𝑏max comes from dropping the 𝑂

(
𝑏maxΛQCD

)𝑎 terms in Eq. (16), and these
errors can be made arbitrarily small by choosing small enough 𝑏max.

1One more application of evolution equations is needed to convert the 𝜇𝑄0𝑏∗ to 𝜇𝑏∗𝑏∗
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2.) The 𝑔-functions, 𝑔 𝑗/ℎ (𝑥, 𝑏T) and 𝑔𝐾 (𝑏T), that describe nonperturbative transverse coordinate
dependence are exactly scale independent since they are defined with ratios and differences.
The 𝑔 𝑗/ℎ (𝑥, 𝑏T) function only depends on the initial choice of𝑄0 (through the CS evolution),
and both 𝑔 𝑗/ℎ (𝑥, 𝑏T) and 𝑔𝐾 (𝑏T) depend on 𝑏∗. However, all 𝑄-dependence is either in
perturbatively calculable quantities or is just the ln𝑄 multiplying 𝑔𝐾 (𝑏T).

3.) There are formally no modifications to or approximations of the fundamental operator def-
initions. For dealing with 𝑏T becoming large, the only change is to the arguments of
𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0) and 𝐾̃ (𝑏T; 𝜇𝑄0), not to the functions themselves. Thus, the nonpertur-

bative functions 𝑔 𝑗/ℎ (𝑥, 𝑏T) and 𝑔𝐾 (𝑏T) have clear and unambiguous relationships to their
underlying operator definitions, namely Eq. (13) and 𝑔𝐾 (𝑏T) = 𝐾̃

(
𝑏∗; 𝜇𝑄0

)
− 𝐾̃

(
𝑏T; 𝜇𝑄0

)
.

3. Issues & complications

The advantages listed in 1.)-3.) above are formally true if the various parts of the TMD
factorization expression for the cross section are understood to be exactly known. Of course,
however, in practical implementations one always replaces them by approximations or ansatzes, and
this is where complications may enter. Because 𝑔 𝑗/ℎ (𝑥, 𝑏T) and 𝑔𝐾 (𝑏T) are where all the physics
associated with nonperturbative transverse momentum dependence resides, and since detailed access
to that information is the main goal in the present context, they will be the focus of the discussion
below. The main complications with the standard organizational scheme, from the perspective of
hadron structure studies, are the following:

a) In general, if nonperturbative parametrizations for 𝑔 𝑗/ℎ (𝑥, 𝑏T) and 𝑔𝐾 (𝑏T) are chosen ar-
bitrarily, then item 1.) above will be at most only approximately true. If violations of 1.)
are too large, then 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0) is not actually sequestered from the nonperturbative

parametrization. The 𝑏∗(𝑏T) function then effectively becomes an additional nonperturbative
model and 𝑏max becomes a model parameter. Therefore, nonperturbative model parameters
impact the perturbative/collinear part, thus removing one of the motivating advantages of the
𝑏∗ and 𝑔-function method.

In applications to nonperturbative hadron structure, one of the tasks is to disentangle any
purely nonperturbative transverse momentum dependence associated with bound states and
hadronization from perturbative transverse momentum dependence, but violations of 𝑏∗-
independence indicate a breakdown in the ability to identify separate perturbative and non-
perturbative parts.

b) In a parton-model-like picture, where TMD pdfs have a literal number density interpretation,
the relationship between collinear and TMD pdfs is via simple integrals like

𝑓 (𝑥) =
∫

d2𝒌T 𝑓 (𝑥, 𝒌T) . (19)

In full QCD, this type of relation fails because the integral is ultraviolet (UV) divergent, but
generalized versions of it [7, 9, 13] do hold in the form

𝑓 (𝑥; 𝜇𝑄) =
∫

reg.
d2𝒌T 𝑓 (𝑥, 𝒌T; 𝜇𝑄, 𝜇2

𝑄) + Δ + p.s. , (20)

6



P
o
S
(
T
r
a
n
s
v
e
r
s
i
t
y
2
0
2
4
)
0
3
0

TMD phenomenology motivated by nonperturbative structures Ted Rogers

where the “reg” subscript symbolizes a UV regulator that suppresses the contribution from
𝑘T ≳ 𝑄, Δ is a higher order correction that is calculable in perturbative collinear factorization
which is needed to transform the 𝑘T-regulated collinear pdf to the MS scheme, and p.s.
means “power-suppressed.” An arbitrarily chosen functional form for 𝑔 𝑗/ℎ (𝑥, 𝑏T) will not
generally give a 𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0) that satisfies Eq. (20) with previously known collinear

pdf extractions for the left-hand side.

Equations of the form of (19) are an important part of the hadron structure framework of
interpretations, where the nonperturbative parts of TMD pdfs are understood to describe
properties of bound state quark and gluon constituents. This is emphasized in the classic
“prism” diagram that one frequently finds in literature on nonperturbative parton structure —
see Fig. 1.

TMD

GTMD

GPD

TMFF

FF

PDF

TMSD

Z
d2kT

<latexit sha1_base64="ejrD65vIRM9g95ec+Atc7OV0ToE=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRV0GXRjcsKfUETw2QyaYdOHszciCUUN/6KGxeKuPUr3Pk3TtsstPXAhcM593LvPX4quALL+jaWlldW19ZLG+XNre2dXXNvv62STFLWoolIZNcnigkesxZwEKybSkYiX7COP7ye+J17JhVP4iaMUuZGpB/zkFMCWvLMQ4fHgB1gD5AH47sazh0/xMOx1/TMilW1psCLxC5IBRVoeOaXEyQ0i1gMVBCleraVgpsTCZwKNi47mWIpoUPSZz1NYxIx5ebTF8b4RCsBDhOpSx80VX9P5CRSahT5ujMiMFDz3kT8z+tlEF66OY/TDFhMZ4vCTGBI8CQPHHDJKIiRJoRKrm/FdEAkoaBTK+sQ7PmXF0m7VrXPqrXb80r9qoijhI7QMTpFNrpAdXSDGqiFKHpEz+gVvRlPxovxbnzMWpeMYuYA/YHx+QOvbJb3</latexit>
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<latexit sha1_base64="/FEl6ptR+4cmwHULGX0Itt5wwpA=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0VwVZIq6LLoxmUF+4AmlMlk0g6dTMLMjbSGfokbF4q49VPc+TdO2yy09cDA4Zx7uWdOkAquwXG+rbX1jc2t7dJOeXdv/6BiHx61dZIpylo0EYnqBkQzwSVrAQfBuqliJA4E6wSj25nfeWRK80Q+wCRlfkwGkkecEjBS3654XAL2gI0hD6d43LerTs2ZA68StyBVVKDZt7+8MKFZzCRQQbTuuU4Kfk4UcCrYtOxlmqWEjsiA9QyVJGbaz+fBp/jMKCGOEmWeiTFXf2/kJNZ6EgdmMiYw1MveTPzP62UQXfs5l2kGTNLFoSgTGBI8awGHXDEKYmIIoYqbrJgOiSIUTFdlU4K7/OVV0q7X3Ita/f6y2rgp6iihE3SKzpGLrlAD3aEmaiGKMvSMXtGb9WS9WO/Wx2J0zSp2jtEfWJ8/uUWTIQ==</latexit>

� = 0
<latexit sha1_base64="hEfdCOP3U+J/q/kJPK8Xak5Gt4I=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CUA8eI5gHJkuYnXSSIbOzy8ysEJb8hRcPinj1b7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqN59QaR7JBzOO0Q/pQPI+Z9RY6bFzi8JQckXcbrHklt0ZyDLxMlKCDLVu8avTi1gSojRMUK3bnhsbP6XKcCZwUugkGmPKRnSAbUslDVH76eziCTmxSo/0I2VLGjJTf0+kNNR6HAa2M6RmqBe9qfif105M/9JPuYwTg5LNF/UTQUxEpu+THlfIjBhbQpni9lbChlRRZmxIBRuCt/jyMmlUyt5ZuXJ/XqpeZ3Hk4QiO4RQ8uIAq3EEN6sBAwjO8wpujnRfn3fmYt+acbOYQ/sD5/AEGAo/V</latexit>

Figure 1: A reproduction of the classic “prism” diagram from Ref. [11, figure 1] showing the connections
between different types of parton correlation functions in a nonperturbative structure interpretation. The
transverse momentum integrals are typically UV divergent, and so preserving the interpretation in full QCD
requires translating them into forms like Eq. (20).

Therefore, allowing the nonperturbative parts contained in 𝑔 𝑗/ℎ (𝑥, 𝑏T) to be unconstrained
by the generalized version of these integrals in Eq. (20) conflicts with a goal of isolating non-
perturbative parts that are to be identified and interpreted with these kinds of nonperturbative
structures in mind. In the standard way of implementing the 𝑏∗/g-function prescription, there
is not an obvious or direct way to ensure that 𝑔 𝑗/ℎ (𝑥, 𝑏T) is subjected to such constraints.

c) In the usual way that the 𝑏∗-method is implemented, the value of 𝑏max actually plays two
separate roles simultaneously: i.) It is treated as the 𝑏T above which transverse coordinate
dependence is understood to become nonperturbative, and ii.) it is the 𝑏T below which one
transforms scales from 𝑄0 to 𝜇𝑏∗ ∼ 1/𝑏T. But these two transition points have different
physical meanings. Transition i.) deals with the physically meaningful question of where
and how the completely nonperturbative transverse coordinate dependence starts to become
important. It is part of the nonperturbative physics that one hopes to model or extract in
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phenomenological applications. Transition ii.), by contrast, is an arbitrary scheme change, and
in principle it has no effect on exact quantities. The details of how ii.) gets implemented are
instead to be guided by the goal of optimizing convergence in perturbation theory calculations
and minimizing higher orders.

There is no reason in principle that these two transition points need to be exactly the same.
However, the 𝑏∗-method, at least in the specific way that it is usually set up, makes them
identical. This puts unnecessarily rigid constraints on how one describes the nonperturbative-
to-perturbative transition.

One may try to avoid this by introducing two separate 𝑏∗ functions, with two separate 𝑏max’s.
One of them can then be used to regulate the 𝑏T argument at large 𝑏T and the other can be
used to construct 𝜇𝑏∗ . But that exacerbates the problem in a) by putting multiple arbitrary
functions and parameters into the collinear factorization parts. The problem cannot be
completely avoided because it is a consequence of relying on the 𝑏T-argument substitution
method as a way to simultaneously regulate large 𝑏T behavior where nonperturbative physics
sets in and to transform to ∼ 1/𝑏T scaling in the small 𝑏T ≪ 1/𝑄0 limit.

These complications are ultimately connected to the fact that the usual 𝑏∗ organization of factors
views 𝑏T as coming from only two very sharply defined contributions, one that involves entirely
perturbative 𝑏T-dependence and one that is entirely nonperturbative 𝑏T-dependence. However, a
more realistic view is that there are three types of 𝑏T-dependence:

1. Totally nonperturbative behavior as 𝑏T → ∞.

2. Very reliable collinear factorization as 𝑏T ≪ 1/𝑄0.

3. An intermediate transition region around 𝑏T ≈ 1/𝑄0 where 𝑏T-dependence is reasonably well-
described by perturbative collinear factorization, but is not as isolated from nonperturbative
effects as region #2.

In an ideal TMD parametrization, region 3 above would be described by a physically motivated
model that interpolates between the first two. However, the standard way of organizing the 𝑏∗
prescription leads one to assign all 𝑏T-dependence only to one of either the first two categories.
The practical consequences of this are possibly not very serious if 𝑄 is so large that the 𝑔-functions
make a relatively small contribution that can be viewed as a correction to resummation calculations
that only involves collinear pdfs. For this situation, it is possible that only the general qualitative
features of the 𝑔-functions are important.

However, it becomes more of an issue when extracting the details of nonperturbative transverse
momentum dependence and separating them from perturbatively calculable parts is the main target
goal. Of course, one way around the problem is simply to construct parametrizations of the 𝑔-
functions from the outset such that they explicitly evade a)-c) above, and this is essentially the
approach we advocate below. (Although, an outcome is that most of the practical advantages of
using a 𝑏∗ prescription and 𝑔-function style of organization to start with are no longer present.)

The identification of the issues summarized above is not new. Our contribution is only to
offer one strategy for systematizing their treatment. In particular, the problems that arise from

8
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nonperturbative model dependence affecting perturbative calculations have been discussed for a
long time. References [10, 12], for example, deal with the problem by imposing continuity and
smoothness conditions at the boundary between the perturbative and nonperturbative regions, thus
preserving more of the predictive power coming from the collinear factorization parts of calculations.

4. Proposed modifications

In Refs. [1, 8, 9], we proposed a set of steps designed to evade issues a)-c) above. Since they
are meant for applications where extracting the details of nonperturbative transverse momentum
(the behavior that is normally contained entirely in the 𝑔-functions) is the main objective, we have
been calling it a “hadron structure oriented” (HSO) approach to TMD phenomenology. While
Refs. [1, 8, 9] list many details, the overall basic strategy is simple to state:

1. Construct a smooth and continuous parametrization of 𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄
2
0) that directly

interpolates between perturbative and nonperturbative 𝑏T descriptions for 𝑏T ≈ 1/𝑄0 and
𝑏T ≫ 1/𝑄0 respectively.2

2. Impose the constraint in Eq. (20) on this parametrization.

3. Ensure that the parametrization includes the usual scale transformation for the 𝑏T ≪ 1/𝑄0

region that transforms 𝜇𝑄0 ,𝑄0 to ∼ 1/𝑏T.

4. Perform analogous steps for 𝐾̃ (𝑏T; 𝜇𝑄0).

5. Evolve to 𝑄 > 𝑄0 for comparing with higher scales.

Once this is done, the result can be transformed into the usual 𝑏∗/𝑔-function construction if
that is desired. The resulting 𝑔-functions will no longer have the complications listed in a)-c) of the
previous section.

5. Questions

The following questions arose in the context of the talk:

5.1 Can one use a 𝑏min regulator rather than a transverse momentum cutoff?

References [1, 8, 9] used a direct transverse momentum cutoff to regulate the integral in Eq. (20),
with an input parametrization constructed in transverse momentum space. This was for various
practical reasons, but it is not essential to the basic procedure, and other regulators are acceptable.
Another common approach, especially for parametrizations constructed directly in 𝑏T-space, is to
freeze 𝑏T below some 𝑏min to regulate the integral. It is instructive to repeat steps analogous to
Secs. III and IV of Refs. [1], but now in 𝑏T-space directly and with a small 𝑏T cutoff to regulate the
UV divergence rather than a large 𝑘T cutoff in transverse momentum space.

2Refs. [1, 8, 9] actually interpolated in 𝑘T-space, but the basic strategy is the same in both transverse coordinate or
momentum space.
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First, one defines the cutoff regulator prescription by specifying an arbitrary cutoff function,

𝑏𝑐 (𝑏T) =
{
𝑏T 𝑏T ≳ 𝑏min

𝑏min 𝑏T ≪ 𝑏min
, (21)

with 𝑏min ≈ 1/𝜇𝑄0 . It could be any function with this property, but for concreteness let us choose

𝑏𝑐 (𝑏T) =
√︃
𝑏2

T + 𝑏2
min . (22)

Then the integral in Eq. (20) is regulated if we replace the 𝑏T-space TMD pdf by one with the 𝑏T

argument replaced by 𝑏𝑐 (𝑏T),

𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄
2
0) −→ 𝑓 𝑗/ℎ (𝑥, 𝑏𝑐 (𝑏T); 𝜇𝑄0 , 𝑄

2
0) . (23)

In 𝑏T-space, step 1 of Sec. 4 would be to construct a parametrization that interpolates between
the logarithmically diverging perturbative collinear factorization prediction at small 𝑏T and the
nonperturbative behavior at large 𝑏T → ∞. If we keep only the lowest nontrivial order at small 𝑏T,
this would mean we need

𝑓 (𝑥, 𝑏T; 𝜇𝑄0 ;𝑄2
0)param

=


Constant − 𝐴 ln

(
𝑏T𝜇𝑄0
𝑏0

)
− 𝐵

[
ln2

(
𝑏T𝜇𝑄0
𝑏0

)
+ ln

(
𝑏T𝜇𝑄0
𝑏0

)
ln

(
𝑄2

0
𝜇2
𝑄0

)]
𝑏T ≪ 1/ΛQCD

nonperturbative parametrization 𝑏T → ∞
, (24)

where 𝑏0 = 2𝑒−𝛾𝐸 , 𝐴 and 𝐵 are known 𝑂 (𝛼𝑠) functions of 𝑥 calculated in collinear perturbation
theory and the constant term is ultimately going to be fixed by imposing Eq. (20), which for the
𝑏min cutoff is∫

d2𝒌T

∫
d2𝒃T

(2𝜋)2 𝑒
𝑖𝒌T ·𝒃T 𝑓 (𝑥, 𝑏𝑐 (𝑏T); 𝜇𝑄0 ;𝑄2

0)param = 𝑓 (𝑥, 𝑏min; 𝜇𝑄0 ;𝑄2
0)param = 𝑓 (𝑥; 𝜇𝑄0) − Δ .

(25)
An example of a reasonable parametrization that satisfies the above might be

𝑓 (𝑥, 𝑏T; 𝜇𝑄0 ;𝑄2
0)param

= 𝐶𝑒−𝑚𝑎𝑏
2
T − 𝐴 ln

(
𝑏T𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏T

)
− 𝐵

[
ln2

(
𝑏T𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏T

)
+ ln

(
𝑏T𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏T

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
+ 𝐴 ln

(
𝜇𝑄0

𝑚𝑏

)
+ 𝐵

[
ln2

(
𝜇𝑄0

𝑚𝑏

)
+ ln

(
𝜇𝑄0

𝑚𝑏

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
. (26)

The nonperturbative model parameters are the mass scales 𝑚𝑎 and 𝑚𝑏, which are expected to be
comparable in size to ΛQCD. The model vanishes as 𝑏T → ∞, so the Fourier-Bessel transform to
transverse momentum space exists as an ordinary function. 𝐶 is the constant term that will be fixed
by imposing Eq. (25):

𝐶𝑒−𝑚𝑎𝑏
2
min − 𝐴 ln

(
𝑏min𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏min

)
− 𝐵

[
ln2

(
𝑏min𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏min

)
+ ln

(
𝑏min𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏min

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
+ 𝐴 ln

(
𝜇𝑄0

𝑚𝑏

)
+ 𝐵

[
ln2

(
𝜇𝑄0

𝑚𝑏

)
+ ln

(
𝜇𝑄0

𝑚𝑏

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
= 𝑓 (𝑥; 𝜇𝑄0) − Δ , (27)
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which fixes

𝐶 = 𝑓 (𝑥; 𝜇𝑄0) − Δ + 𝐴 ln
(
𝑏min𝜇𝑄0

𝑏0

)
+ 𝐵

[
ln2

(
𝑏min𝜇𝑄0

𝑏0

)
+ ln

(
𝑏min𝜇𝑄0

𝑏0

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
− 𝐴 ln

(
𝜇𝑄0

𝑚𝑏

)
− 𝐵

[
ln2

(
𝜇𝑄0

𝑚𝑏

)
+ ln

(
𝜇𝑄0

𝑚𝑏

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
+ p.s. , (28)

where the “p.s.” terms are𝑂
(
𝑏minΛQCD

)
. Fixing 𝐶 to the leading power terms in Eq. (28) amounts

to step 2 of Sec. 4. Recall that we are considering the limit that ΛQCD/𝜇𝑄0 is small, so the terms on
the second line in Eq. (28) are not perturbatively suppressed even though the 𝐴 and 𝐵 factors are
proportional to 𝛼𝑠 (𝜇𝑄0). Setting 𝑏min = 𝑏0/𝜇𝑄0 eliminates the logarithmic terms on the first line.
Then, the full parametrization in Eq. (26) is

𝑓 (𝑥, 𝑏T; 𝜇𝑄0 ;𝑄2
0)param

= 𝑒−𝑚𝑎𝑏
2
T

{
𝑓 (𝑥; 𝜇𝑄0) − Δ − 𝐴 ln

(
𝜇𝑄0

𝑚𝑏

)
− 𝐵

[
ln2

(
𝜇𝑄0

𝑚𝑏

)
+ ln

(
𝜇𝑄0

𝑚𝑏

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]}
− 𝐴 ln

(
𝑏T𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏T

)
− 𝐵

[
ln2

(
𝑏T𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏T

)
+ ln

(
𝑏T𝜇𝑄0

𝑏0 + 𝑚𝑏𝑏T

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
+ 𝐴 ln

(
𝜇𝑄0

𝑚𝑏

)
+ 𝐵

[
ln2

(
𝜇𝑄0

𝑚𝑏

)
+ ln

(
𝜇𝑄0

𝑚𝑏

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
. (29)

Now the limit of 𝑏TΛQCD → 0 reproduces the usual well-known OPE expression,

𝑓 (𝑥, 𝑏T; 𝜇𝑄0 ;𝑄2
0)param

𝑏TΛQCD→0
=

𝑓 (𝑥; 𝜇𝑄0) − Δ − 𝐴 ln
(
𝑏T𝜇𝑄0

𝑏0

)
− 𝐵

[
ln2

(
𝑏T𝜇𝑄0

𝑏0

)
+ ln

(
𝑏T𝜇𝑄0

𝑏0

)
ln

(
𝑄2

0

𝜇2
𝑄0

)]
+𝑂

(
𝑏TΛQCD

)𝑎
,

(30)

and Eq. (20) holds by construction with only 𝑂
(
𝑏minΛQCD

)𝑎 errors. The large 𝑏T behavior in this
model is essentially Gaussian. The constant terms in the OPE arise from the Δ term.

For dealing with the cross section behavior at 𝑄 ≈ 𝑄0 through 𝑂
(
𝛼𝑠 (𝜇𝑄0)

)
, this is sufficient.

However, if we plan to evolve to 𝑄 ≫ 𝑄0, then the 𝑏T ≪ 1/𝑄0 region also needs to be properly
accounted for. To deal with this, it is straightforward to perform another scale transformation from
𝜇𝑄0 , 𝑄0 to ∼ 1/𝑏T using the evolution equations in Eqs. (3)–(5) again. Since this transformation
takes place in the 𝑏T ≲ 1/𝑄0 region of coordinate space, it is under control perturbatively and
the errors it introduces can be minimized with detailed treatments of higher orders in perturbation
theory.

If it is preferred, one may now take this parametrization and construct a 𝑔 𝑗/ℎ (𝑥, 𝑏T) function
just by substituting it into Eqs. (11)–(13),

𝑓 (𝑥, 𝑏T; 𝜇𝑄0 ;𝑄2
0)param = 𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0)param𝑒

−𝑔 𝑗/ℎ (𝑥,𝑏T )param (31)

11
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with

𝑔 𝑗/ℎ (𝑥, 𝑏T)param ≡ − ln

(
𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0)param

𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄
2
0)param

)
. (32)

However, now this 𝑔 𝑗/ℎ (𝑥, 𝑏T)param evades all the complications listed in a)-c) of Sec. 3. In particular,
there is no disadvantage in making 𝑏max conservatively very small, 𝑏max ≲ 1/𝑄0. The consequence
of doing so is only that a significant part of the perturbative transverse coordinate dependence is
handled by 𝑔 𝑗/ℎ (𝑥, 𝑏T)param. Therefore, one may ensure that the power suppressed 𝑂

(
ΛQCD𝑏max

)𝑎
terms in Eq. (16) are negligible without sacrificing the predictive power coming from collinear
factorization. The 𝑏∗-independence in item 1 of Sec. 2 is exactly realized in a 𝑔 𝑗/ℎ (𝑥, 𝑏T)param

constructed through steps like the above.
It is instructive to contrast this with the kind of result that would be obtained if one followed

more typical steps. Let us label such a result as “param,2.” There, one writes Eq. (12) with
𝑓 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0) immediately replaced by its OPE expression,

𝑓 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄
2
0)param,2 = 𝑓OPE, 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄

2
0)𝑒

−𝑔 𝑗/ℎ (𝑥,𝑏T )param,2 , (33)

and 𝑔 𝑗/ℎ (𝑥, 𝑏T)param,2 is replaced with a simple ansatz. A typical example might be a quadratic
power law,

−𝑔 𝑗/ℎ (𝑥, 𝑏T)param,2 = −𝑚2
𝑎𝑏

2
T . (34)

Now the 𝑏∗-independence is clearly not preserved to very high accuracy because this would require
at least that

𝑒−𝑔 𝑗/ℎ (𝑥,𝑏T )param,2 ≈ − ln

(
𝑓OPE, 𝑗/ℎ (𝑥, 𝑏T; 𝜇𝑄0 , 𝑄

2
0)

𝑓OPE, 𝑗/ℎ (𝑥, 𝑏∗; 𝜇𝑄0 , 𝑄
2
0)

)
(35)

in the region of small 𝑏T ≈ 𝑏max. For a power law 𝑔 𝑗/ℎ (𝑥, 𝑏T), however, such a correspondence can
only be a rough approximation within some narrow range of moderate 𝑏T.

Furthermore, applying Eq. (25) to Eq. (33) gives∫
d2𝒌T

∫
d2𝒃T

(2𝜋)2 𝑒
𝑖𝒌T ·𝒃T 𝑓

(
𝑥, 𝑏𝑐 (𝑏T); 𝜇𝑄0 ;𝑄2

0

)
param,2

= 𝑓OPE, 𝑗/ℎ (𝑥, 𝑏∗(𝑏T = 𝑏min); 𝜇𝑄0 , 𝑄
2
0)𝑒

−𝑚2
𝑎𝑏

2
min

= 𝑓OPE, 𝑗/ℎ (𝑥, 𝑏min; 𝜇𝑄0 , 𝑄
2
0) +𝑂

(
𝑏2

min

𝑏2
max

)
+𝑂

(
Λ2

QCD𝑏
2
min

)
= 𝑓 (𝑥; 𝜇𝑄0) − Δ +𝑂

(
𝑏2

min

𝑏2
max

)
+𝑂

(
Λ2

QCD𝑏
2
min

)
. (36)

However, near the input scale both 𝑏min and 𝑏max are 𝑂 (1/𝑄0), so the 𝑂
(
𝑏2

min/𝑏
2
max

)
term is not a

power suppressed correction (and so the expansion in 𝑏min/𝑏max is not valid). Therefore, Eq. (25)
fails in general for Eq. (33). To be preserved, the 𝑔 𝑗/ℎ (𝑥, 𝑏T) function needs to be constructed so as
to cancel the 𝑂

(
𝑏2

min/𝑏
2
max

)
behavior.

After evolution to 𝑄 ≫ 𝑄0, the 𝑏min becomes ∼ 1/𝑄 while 𝑏max remains ∼ 1/𝑄0. Then, the
𝑂

(
𝑏2

min/𝑏
2
max

)
error terms are𝑂

(
𝑄2

0/𝑄
2) , which are eventually negligible as𝑄 increases. However,

much of the data of interest for studies of hadron structure are in the region of 𝑄 ≈ 𝑄0.
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This example of a model parametrization, Eq. (29), is only meant for illustration purposes and
others are probably much better in practice. The point of this discussion is not the details of the
parametrization itself, but rather the general steps for constructing it.

5.2 Is Eq. (20) automatically satisfied within the standard organization?

Equation (20) is obviously not guaranteed to be satisfied for arbitrary functions substituted
into the integrand, given a fixed extraction for an MS collinear pdf on the left-hand side. It will be
satisfied eventually for large enough 𝑄 for any parametrization that matches to the OPE as 𝑏T → 0.
That includes standard existing parametrizations that use the usual 𝑏∗-procedure as described in
Sec. 2. However, the reason is that at large enough 𝑄 the sensitivity of the 𝑘T-integral to the
𝑔-functions eventually vanishes. Specifically, the version of Eq. (20) that arises automatically in a
standard 𝑏∗ implementation has the form,

𝑓 (𝑥; 𝜇𝑄) =
∫

reg.
d2𝒌T 𝑓 (𝑥, 𝒌T; 𝜇𝑄, 𝜇2

𝑄) + Δ +𝑂
(
𝑄0
𝑄

)𝑎
, 𝑎 > 0 . (37)

In other words, the power suppressed error terms are in the form of ratios of the input scale to the hard
scale, so the relation fails for applications at 𝑄 ≈ 𝑄0, which is where sensitivity to nonperturbative
parts is the greatest. As the illustrative example above shows, this is the result if one does not
incorporate the 𝑔-functions along with the perturbative parts in the integral condition.

kT ⇡ Q
<latexit sha1_base64="pB6m1FSQ5h89jiW3cv+LJWJRWKI=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6LXjy20C9ol5JNs21oNhuTbLEs/R1ePCji1R/jzX9j2u5BWx8MPN6bYWZeIDnTxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThRhDZJzGPVCbCmnAnaNMxw2pGK4ijgtB2M7+d+e0KVZrFomKmkfoSHgoWMYGMlf9xvoB6WUsVPqN4vltyyuwBaJ15GSpCh1i9+9QYxSSIqDOFY667nSuOnWBlGOJ0VeommEpMxHtKupQJHVPvp4ugZurDKAIWxsiUMWqi/J1IcaT2NAtsZYTPSq95c/M/rJia89VMmZGKoIMtFYcKRidE8ATRgihLDp5Zgopi9FZERVpgYm1PBhuCtvrxOWpWyd1Wu1K9L1bssjjycwTlcggc3UIUHqEETCDzCM7zCmzNxXpx352PZmnOymVP4A+fzBxNzkaU=</latexit>

NP transverse momentum parameters needed
<latexit sha1_base64="9aPajV+japaJDi5aRmdXL+XX2rc=">AAACGHicbVBNSwMxEM3Wr1q/qh69BIvgqe5WQY9FL56kgtVCW0o2O7WhSXZJZsWy9Gd48a948aCIV2/+G7O1B60OBB7vvZnJvDCRwqLvf3qFufmFxaXicmlldW19o7y5dW3j1HBo8ljGphUyC1JoaKJACa3EAFOhhJtweJbrN3dgrIj1FY4S6Cp2q0VfcIaO6pUPOgj3mF00KBqmbW4FqmIFGlNFE2aYAnQk1QARRONeueJX/UnRvyCYggqZVqNX/uhEMU/zgVwya9uBn2A3YwYFlzAudVILCeNDdgttB7XbZ7vZ5LAx3XNMRPuxcU8jnbA/OzKmrB2p0DkVw4Gd1XLyP62dYv+kmwmdpAiafy/qp5JiTPOUaCQMcJQjBxg3wv2V8oELg+dZlFwIwezJf8F1rRocVmuXR5X66TSOItkhu2SfBOSY1Mk5aZAm4eSBPJEX8uo9es/em/f+bS14055t8qu8jy8kD6EU</latexit>

Calculated with perturbation theory
<latexit sha1_base64="sPOyCVOy7vOjRFFFFoeMtvqfJhk=">AAACE3icbVC7SgNBFJ31GeNr1dJmMAhiEXajoGUwjWUE84AkhNnJTTJk9sHMXTUs+Qcbf8XGQhFbGzv/xslmC008MHA451zu3ONFUmh0nG9raXlldW09t5Hf3Nre2bX39us6jBWHGg9lqJoe0yBFADUUKKEZKWC+J6HhjSpTv3EHSoswuMVxBB2fDQLRF5yhkbr2aRvhAZMKkzyWDKFH7wUOaQQKY+WlIYpDCNV40rULTtFJQReJm5ECyVDt2l/tXshjHwLkkmndcp0IOwlTKLiESb4da4gYH7EBtAwNmA+6k6Q3TeixUXq0HyrzAqSp+nsiYb7WY98zSZ/hUM97U/E/rxVj/7KTiCCKEQI+W9SPJcWQTguiPaGAoxwbwrgS5q+UD5liHE2NeVOCO3/yIqmXiu5ZsXRzXihfZXXkyCE5IifEJRekTK5JldQIJ4/kmbySN+vJerHerY9ZdMnKZg7IH1ifP4ognzQ=</latexit>

Figure 2: Schematic representation of the relative contributions from perturbative (yellow) and nonpertur-
bative (blue) transverse momentum dependence to the 𝑘T-integral of a TMD pdf. For large enough 𝑄, the
yellow contribution dominates.

Intuitively, the reason it eventually holds for 𝑄 ≫ 𝑄0 is that the integrand in Eq. (37) becomes
completely dominated by a perturbative tail whose description only involves collinear pdfs and
none of the sensitivity to nonperturbative transverse momentum dependence. Figure 2 provides
a schematic visualization of this. The curve is meant to represent a TMD pdf plotted versus 𝑘T,
and the shaded blue and yellow areas are meant to represent the contributions from nonperturbative
and perturbative transverse momentum dependence respectively to the integral over 𝒌T, assuming
a regulator that removes the 𝑘T ≳ 𝑄 region. As 𝑄 grows, the contribution from the yellow part
increases until there is essentially no non-negligible contribution from the blue part. That is, the
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area under the curve is completely dominated by behavior that is describable from the outside in
terms of collinear pdfs.

But situations where nonperturbative transverse momentum plays no role are the opposite of
what one is seeking in the context of nonperturbative hadron structure applications. While it might
turn out that for specific large values of𝑄 it is the case that𝑄0/𝑄 is small enough that the error terms
in Eq. (37) are negligible, assuming this is true from the outset restricts one to considering only
conservatively very large 𝑄, and it contradicts the goal of extracting the nonperturbative transverse
momentum dependence associated with bound states or hadronization. Furthermore, it discards
a valuable consistency constraint on the 𝑔-functions, which could be important for the 𝑘T ≪ 𝑄

region of the differential cross section even at larger 𝑄. What is needed for applications where the
details of the 𝑔-functions are important is a version of Eq. (37) of the form

𝑓 (𝑥; 𝜇𝑄) =
∫

reg.
d2𝒌T 𝑓 (𝑥, 𝒌T; 𝜇𝑄, 𝜇2

𝑄) + Δ +𝑂
(
ΛQCD

𝑄0

)𝑎
, 𝑎 > 0 (38)

so that the integrals relating TMD and collinear pdfs hold even for𝑄 ≈ 𝑄0. This is not automatically
satisfied for arbitrary parametrizations of 𝑔 𝑗/ℎ (𝑥, 𝑏T) but rather needs to be imposed on them directly.
For example, it is satisfied by construction in the example in Eq. (29) but not in Eq. (33).

Examples in toy model field theories are also instructive for illustrating the effect. In Ref. [2],
for example, illustrative examples with a scalar Yukawa theory found that significant violations of
Eq. (38) with a cutoff regulator result if the standard 𝑔-function ansatz method is used.

5.3 What is the difference with the 𝜇𝑏∗ approach?

Both the more traditional organization of TMD factorization and the approach we have adopted
in Sec. 4 involve a scheme transformation to ∼ 1/𝑏T behavior at 𝑏T ≪ 1/𝑄0. See, for example, the
function named 𝑄0(𝑏T, 𝑎) in Eq.(77) of Ref. [1], which is similar to Eq. (15). This can give the
appearance that there is no real difference between the two methods.

The significant difference is related to issue c) of Sec. 3. Recall that in the example of
Sec. 5.1 the nonperturbative transverse momentum dependence is controlled entirely by the model
parameters 𝑚𝑎 and 𝑚𝑏. Changing the scales to ∼ 1/𝑏T is left as a separate step, and can be chosen
to occur at much large values of 1/𝑏T than 𝑚𝑎 or 𝑚𝑏. The form of the function used in the scale
transformation, and the value of 𝑏T where it is implemented, do not need to be connected in any
way with how one models the nonperturbative transverse momentum dependence as 𝑏T → ∞. This
separation is the main difference from the usual approach.

Contrast this with a parametrization like Eqs. (33)–(35). If, in attempting to make𝑂
(
𝛼𝑠 (𝜇𝑏∗)𝑛

)
and 𝑂

(
ΛQCD𝑏max

)𝑎 errors as small as possible, one makes 𝑏max too small, then one will be forced
to describe even the perturbatively describable 𝑏T-dependence with a nonperturbative ansatz. If,
in attempting to widen the range that is described perturbatively as far as possible, one makes
𝑏max too large, then 𝛼𝑠 (𝜇𝑏∗) becomes a nonperturbative large coupling and ΛQCD𝑏max errors stop
being negligible. Notice the practical difficulties that this trade-off creates for disentangling truly
nonperturbative (𝑏T > 1/𝑄0) from perturbative (𝑏T ≪ 1/𝑄0) transverse momentum dependence.

We argue that such a trade-off is not actually necessary and is only an artifact of using an overly
restrictive organizational scheme.
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5.4 Is it useful to keep the TMD pdfs evaluated at a 𝑏𝑐 (𝑏T)?

The TMD pdfs in the MS scheme and with fixed 𝜇 =
√
𝜁 ∼ 𝑄0 are determined by their operator

definitions for all 𝑏T, and therefore, from the evolution equations, for all higher 𝑄. In particular,
assuming that the MS pdfs are known, the small 𝑏T (or large-𝑘T) parts are uniquely determined by
the OPE, and this rigidity is an important part of the predictive power of the overall formalism. If
a replacement like Eq. (23) is made and kept, then the TMD pdfs no longer follow the OPE and
they no longer match their operator definition at a given value of 𝑏T. This can be seen directly
in the example above. In Eq. (29), if the replacement 𝑏T → 𝑏𝑐 (𝑏T) =

√︃
𝑏2

T + 𝑏2
min is made, then

a TMD pdf does not transform into its OPE expression as 𝑏T → 0, but rather freezes at its value
around 𝑏T ≈ 𝑏min. Another way to see it directly is by considering the Fourier-Bessel transforms of
common functional forms. The logarithms of the OPE in 𝑏T-space translate into (1/𝑘2

T)×logarithms
in 𝑘T-space:

ln
(
𝑏T𝑄

2𝑒−𝛾𝐸

)
↦→ − 1

2𝜋𝑘2
T
, ln2

(
𝑏T𝑄

2𝑒−𝛾𝐸

)
↦→ − 1

2𝜋𝑘2
T

ln

(
𝑄2

𝑘2
T

)
(39)

whereas with the 𝑏𝑐 (𝑏T) in place

ln
(

𝑄

2𝑒−𝛾𝐸

√︃
𝑏2

T + 𝑏2
min

)
↦→ − 𝑏min

2𝜋𝑘T
𝐾1(𝑏min𝑘T) ,

ln2
(

𝑄

2𝑒−𝛾𝐸

√︃
𝑏2

T + 𝑏2
min

)
↦→ − 1

2𝜋𝑘2
T

[
𝐾0(𝑏min𝑘T) + 𝑘T𝑏min ln

(
𝑏min𝑄

2

2𝑒−𝛾𝐸 𝑘T

)
𝐾1(𝑏min𝑘T)

]
, (40)

which only matches Eq. (39) in the limit that 𝑘T ≪ 1/𝑏min. For larger𝑄, one would typically choose
a 𝑏min ∼ 1/𝑄. Then, it could be argued that the only physically relevant region of 𝑘T is anyway
𝑘T ≪ 1/𝑏min, so the 𝑏T → 𝑏𝑐 (𝑏T) replacement should be irrelevant. However, the replacement
nevertheless allows another adjustable arbitrary parameter to influence the small-to-large transverse
momentum transition, so our view is that it should be avoided.

In earlier work [3], I advocated a procedure that did involve keeping the 𝑏T → 𝑏𝑐 (𝑏T)
replacement as described above in the hopes that having the freedom to shift contributions between
the 𝑊-term and the 𝑌 -term would lead to a more refined treatment of large transverse momentum
dependence in the cross section. However, because of the increase in adjustable parameters in the
large transverse momentum region and the associated loss of predictive power, I no longer view this
as an optimal approach.
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