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1. Introduction

The Standard Model (SM) has provided remarkable insights into the fundamental forces of
nature, while predicting phenomena with exceptional accuracy. However, this model is unable to
account for several key aspects of our universe, such as the cosmological matter-antimatter asym-
metry in the universe, the nature of dark matter, and the incomprehensible small CP-violating term
in Quantum Chromodynamics (QCD). Among the most compelling solutions to these problems,
we find a hypothetical particle known as the QCD axion. First proposed by R. Peccei and H. Quinn
[1, 2] in response to the "strong CP problem", and later on by Weinberg and Wilczek [3, 4], the
axion arises from a new 𝑈 (1)PQ symmetry that dynamically suppresses CP violation in the strong
interaction. This particle’s unique properties not only resolve an internal inconsistency in QCD but
also make it a well-motivated candidate for dark matter, linking particle physics to cosmological
observations.

Axions are expected to couple weakly with ordinary matter and light, and many of the most
promising avenues for detecting them are based on astrophysical observations of extreme systems
that are able to magnify these feeble interactions. One promising approach is to study the behaviour
of axions in plasmas, which could also provide new insights into these astrophysical environments.

In summary, the present work aims to explore the interactions between axions and the elemen-
tary particles in a plasma, using quantum field theory techniques and introducing a framework for
Axion-Quantum Electrodynamics (Axion-QED).

2. Axion-Quantum Electrodynamics

To do this, we start with the usual lagrangian density of QED, and introduce a pseudoscalar
(axion) real field, which couples to the Dirac Field through a Yukawa type interaction, and also
interacts with the electromagnetic (EM) field. In this setting, after applying the Faddeev-Popov
trick [5] for gauge fixing and integrating by parts, the Lagrangian density that describes the elec-
tromagnetic field 𝐴𝜇 interacting with a Dirac fermion 𝜓 of mass 𝑚𝜓 and charge 𝑞, and an axion 𝜑

of mass 𝑚𝜑 is given by: (throughout this work we use NU, ℏ = 𝑐 = 1)

L = − 1
2
𝜑

(
□ + 𝑚2

𝜑

)
𝜑 − 1

2
𝐴𝜇

[
−𝜕2𝑔𝜇𝜈 + (1 − 1

𝜉
)𝜕𝜇𝜕𝜈

]
𝐴𝜈

+ �̄�
(
𝑖 /𝜕 − 𝑚𝜓

)
𝜓 + 𝑞�̄�𝛾𝜇𝜓𝐴𝜇 −

𝑔𝜑𝛾

4
𝜑�̃�𝜇𝜈𝐹𝜇𝜈 − 𝑖𝑔𝜑𝜓𝜑�̄�𝛾

5𝜓.

(1)

This way, we can clearly see the separation between the free-field Lagrangian L0 = L𝜑 +L𝛾 +L𝜓,
and the interacting Lagrangian Lint = L𝜓𝛾 + L𝜑𝛾 + L𝜑𝜓.

3. Using functional methods in Axion-QED

In this work, we decided to use functional methods to examine the fundamental interactions
of our model, enabling us to derive the Feynman rules for our theory. To achieve this, we need
to calculate the relevant correlation functions through the Generating Functional of our theory,
𝑍 [𝐽]. However, after determining it, we quickly discovered that we cannot use it for our purposes.
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Thus, we resorted to a very useful trick and showed that we can calculate expectation values in the
interacting theory by means of expectation values in the free theory:

⟨Ω|T {O(𝑥𝑖)}|Ω⟩ =
〈
0|T {O(𝑥𝑖)𝑒𝑖𝑆int}|0

〉〈
0|T {𝑒𝑖𝑆int}|0

〉 , (2)

where ⟨Ω|T {O(𝑥𝑖)}|Ω⟩ refer to expectation values in the interacting theory, while ⟨0|T {O(𝑥𝑖)}|0⟩
denote expectation values in the free theory. This way, we only need the generating functional for
the free theory, Z0, which is much more simple to compute and is given by:

Z0 [𝜂, 𝜂, 𝜆, 𝐽𝜇] = N0 exp
{
−1

2

∫
𝑤𝑧

𝜆(𝑤)Δ𝐹 (𝑤 − 𝑧)𝜆(𝑧)
}
×

exp
{
−
∫
𝑤𝑧

𝜂(𝑤)𝑆𝐹 (𝑤 − 𝑧)𝜂(𝑧)
}
× exp

{
−1

2

∫
𝑤𝑧

𝐽𝜃 (𝑤)𝐷 𝜃 𝜙 (𝑤 − 𝑧)𝐽𝜙 (𝑧)
}
,

(3)

Here, Δ𝐹 (𝑤 − 𝑧), 𝑆𝐹 (𝑤 − 𝑧) and 𝐷 𝜃 𝜙 (𝑤 − 𝑧) represent the leading order (LO) propagators of the
real scalar field, the Dirac field and of the vector field, respectively. Next, we expand the interaction
lagrangian in powers of the three coupling constants, such that up to first order O(𝑒1, 𝑔1

𝜑𝛾 , 𝑔
1
𝜑𝜓

):

𝑒𝑖𝑆int = 1 + 𝑖

∫
𝑥

Lint(𝑥). (4)

This way, we can calculate any correlation function we are interested in, up to first order, according
to:

⟨O(𝑥𝑖)⟩Ω =
⟨O(𝑥𝑖)⟩0 + 𝑖

∫
𝑥

〈
O(𝑥𝑖)

[
−𝑒�̄�𝛾𝜇𝜓𝐴𝜇 − 1

4𝑔𝜑𝛾𝜑�̃�
𝜇𝜈𝐹𝜇𝜈 − 𝑖𝑔𝜑𝜓𝜑�̄�𝛾

5𝜓
]〉

0 + · · ·
1 + 𝑖

∫
𝑥

〈[
−𝑒�̄�𝛾𝜇𝜓𝐴𝜇 − 1

4𝑔𝜑𝛾𝜑�̃�
𝜇𝜈𝐹𝜇𝜈 − 𝑖𝑔𝜑𝜓𝜑�̄�𝛾

5𝜓
]〉

0 + · · ·
(5)

3.1 Calculating correlation functions

Now that we have our generating functional for both the free and the interacting theory, we
proceed to calculate the correlation functions of interest. We use the usual definition:〈

0|T {𝜓(𝑥1) · · ·𝜓(𝑥𝑛)�̄�(𝑦1) · · · �̄�(𝑦𝑛)}|0
〉
=

𝛿2𝑛Z0 [𝜂, 𝜂, 𝜆, 𝐽𝜇]
𝑖𝛿𝜂(𝑦𝑛) · · · 𝑖𝛿𝜂(𝑦1)𝑖𝛿𝜂(𝑥𝑛) · · · 𝑖𝛿𝜂(𝑥1)

=
1

Z0 [0]

(
−𝑖 𝛿

𝛿𝜂(𝑦𝑛)

)
· · ·

(
−𝑖 𝛿

𝛿𝜂(𝑦1)

) (
−𝑖 𝛿

𝛿𝜂(𝑥𝑛)

)
· · ·

(
−𝑖 𝛿

𝛿𝜂(𝑥1)

)
Z0 [𝜂, 𝜂, 𝜆, 𝐽𝜇] |𝜂=�̄�=𝜆=𝐽=0

(6)

where the functional derivatives with respect to the Grassmaman numbers are left-handed.

3.2 Calculating two-point correlation functions

Before we start calculating anything, let’s note that correlation functions in the free theory with
odd number of photons (𝐴𝜇), odd number of axions (𝜑) or different numbers of 𝜓’s and �̄�’s vanish.
This happens, because after taking all functional derivatives, what’s left is proportional to powers
of (𝐽𝜇, 𝜆 or 𝜂, 𝜂), which vanish when in the end we take 𝐽𝜇 → 0, 𝜆 → 0, and 𝜂, 𝜂 → 0. This will
be mentioned as Rule 1, and by looking at the denominator in (5), which will always be the same,
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regardless of the correlation function we are calculating, up to first order, we can see that it is equal
to 1, since all the other terms vanish.

In a pedagogical way, we began by determining all the two-point correlation functions of our
theory, which correspond to the propagators of the fields present. Starting with the Dirac field
propagator, we saw that all terms vanish expect one, meaning that it will be given by:

〈
𝜓1�̄�2

〉
Ω
=
〈
𝜓1�̄�2

〉
0 = 𝑆𝐹 (𝑥1 − 𝑥2) =

∫
𝑝

𝑒−𝑖 𝑝 (𝑥1−𝑥2 )
(
/𝑝 + 𝑚𝜓

)
𝑝2 − 𝑚2

𝜓
+ 𝑖𝜖

= (7)

Next, we determine the electromagnetic vector field propagator by calculating the two-point corre-
lation function

〈
𝐴
𝜇

1 𝐴
𝜈
2
〉
Ω

. The only term that does not vanish is
〈
𝐴
𝜇

1 𝐴
𝜈
2
〉

0, so we get the following
result:〈
𝐴
𝜇

1 𝐴
𝜈
2
〉
Ω
=
〈
𝐴
𝜇

1 𝐴
𝜈
2
〉

0 = 𝐷
𝜇𝜈
𝑥1,𝑥2 =

∫
𝑘

−𝑖
𝑘2 + 𝑖𝜖

[
𝑔𝜇𝜈 − (1 − 𝜉) 𝑘

𝜇𝑘𝜈

𝑘2

]
𝑒−𝑖𝑘 (𝑥1−𝑥2 ) =

(8)
Lastly, we calculate the two-point correlation function of the scalar field propagator ⟨𝜑1𝜑2⟩Ω,
corresponding to our axion field. Here, the only non-zero term is ⟨𝜑1𝜑2⟩0. Thus, we conclude that:

⟨𝜑1𝜑2⟩Ω = ⟨𝜑1𝜑2⟩0 = Δ𝐹 (𝑥1, 𝑥2) =
∫
𝑝

𝑖

𝑝2 − 𝑚2
𝜑 + 𝑖𝜖

𝑒−𝑖 𝑝 (𝑥1−𝑥2 ) = (9)

With this, we have calculated all the two-point correlation functions of interest, showing that
they correspond to the leading order (LO) of the field propagators, as expected. Lastly, we have
also included an illustration of the usual Feynman diagrams that correspond to each one of these
propagators.

3.3 Determining the Feynman rules

Now we focus on obtaining the Feynman rules of our model. To do this, we must calculate the
three-point correlation functions that correspond to the interactions vertices of our theory. These
are: the fermion-photon vertex,

〈
𝜓1�̄�2𝐴

𝜇

3
〉
Ω

, the axion-fermion vertex
〈
𝜓1�̄�2𝜑3

〉
Ω

, and the axion-
photon vertex

〈
𝜑1𝐴

𝜇

2 𝐴
𝜈
3
〉
Ω

. After this, we performed a Fourier transform on the results and used
the LSZ reduction formula [6] to infer the Feynman rules. In the end, it was discovered that up
to first order in the coupling constants O(𝑒1, 𝑔1

𝜑𝛾 , 𝑔
1
𝜑𝜓

), the interaction vertices of our theory, are
given by the following Feynman rules in momentum space:

QED vertex:
〈
𝜓1�̄�2𝐴

𝜇

3
〉
Ω

For this case, we see that, at LO, the usual QED vertex remains unchanged when we add the
axion field, resulting in the following Feynman rule:

= −𝑖𝑒𝑞𝛾𝜇 = 𝑖𝑒𝛾𝜇 (for electrons) (10)
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Fermion-axion vertex:
〈
𝜓1�̄�2𝜑3

〉
Ω

When identifying the three-point vertex that represents the interaction between the fermion and
the axion field, it was determined that for one incoming fermion with momentum 𝑝

𝜇

1 together with
two outgoing anti-fermion and axion with momentum 𝑝

𝜇

2 and 𝑝
𝜇

3 , respectively, we have:

= 𝑔𝜑𝜓𝛾
5 (11)

It is important to mention that this interaction only exists at the quantum level, since classically 𝛾5

is zero.

Axion-photon vertex:
〈
𝜑1𝐴

𝜃
2 𝐴

𝜙

3

〉
Ω

Finally, the last three-point correlation function of interest corresponds to the axion-photon
vertex. Thus, it was found that for one incoming axion with momentum 𝑝

𝜇

1 and two outgoing
photons with momentum 𝑝

𝜇

𝐴1 and 𝑝𝜈
𝐴2, the corresponding Feynman rule is:

= −𝑖𝑔𝜑𝛾𝜖𝜇𝜈𝛼𝛽𝑝𝛼
𝐴1𝑝

𝛽

𝐴2 (12)

With this, we were able to understand the fundamental interactions of our model and could quickly
determine the cross-sections for these processes.

4. Conclusion

To conclude, by employing functional methods, we were able to derive the Feynman rules
of our model in a clear and straightforward way. This has allowed us to better understand the
fundamental interactions of our model and could be particularly useful if we were to pursue an
approach discussed in [7], as we would simply need to connect our quantum field theory, named
Axion-QED, with a covariant kinetic theory of plasmas. In that framework, we could compute
the corrected amplitudes for these processes in a plasma, effectively leading to a form of Thermal
Field Theory, which would allow us to better understand the behaviour of axions in astrophysical
environments.
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