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Baryonic Axion in neutron-antineutron oscillation
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The accidental baryonic symmetry is expected to be broken and required from the observed
matter-antimatter asymmetry. The neutron-antineutron oscillating system is the hallmark of
ΔB = 2 models which have the benefits of not inducing proton decay. We study this system in a
framework allowing the most general couplings to understand how a dark matter candidate such as
the axion may couple to the oscillation. In particular a Rabi resonance phenomenon occurs, and
this effect is unconstrained for Axion Like Particles (ALPs) models. Regarding the QCD axion,
its Goldstone nature leads to a robust exclusion of the majority of scenarios allowed.
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1. Introduction

The accidental 𝑈 (1)B symmetry of the Standard Model is supposed to be broken by higher
dimensions operators, the model allows for two (ΔB = 2) quark’s operators of dimension 9. These
couplings are thus expected to be suppressed by a factor (Λ𝑄𝐶𝐷/ΛΔB=2)5 ∼ 10−18 (1 TeV/ΛΔB=2)5

using Λ𝑄𝐶𝐷 ≈ 300 MeV. The standard effective [1] approach to describe the system of neutron
oscillation consider the neutral Dirac fermion with a weak coupling to the proton, a magnetic dipole
moment and a small Majorana mass term:

L = 𝑛̄(𝑖 ̸𝜕 − 𝑚𝐷)𝑛 − 𝜀0

(
𝑛̄𝑛C + 𝑛̄C𝑛

)
− 𝜇

2
𝑛̄𝜎𝜇𝜈𝑛𝐹

𝜇𝜈 . (1)

In the non-relativistic approximation, the dynamic holds in a system of coupled Schrödinger equa-
tions, its resolution leads to the following transition probability of the neutron into an antineutron:

𝑃𝑛→𝑛C (𝑡) = 𝑒−Γ𝑡
𝜀2

0

(Δ𝐸/2)2 + 𝜀2
0

sin2
(√︃

(Δ𝐸/2)2 + 𝜀2
0𝑡

)
(2)

The energy splitting Δ𝐸 is proportional to the magnetic field, the current bound is measured in
the quasi-free regime where 𝐵 → 0 leading to 𝑃𝑛→𝑛C (𝑡) ≃ 𝜀2

0𝑡
2, the constraint on the Majorana

parameter is strong, accordingly to the scale dependence of the quarks operators involved: 𝜀0 <

0.8 × 10−23 eV. The motivation for the present work and the associated article lies in the fact that
promoting the parameter 𝜀(𝑡) → 𝜀0 sin (𝜔𝑡) leads to a new transition probability which features a
Rabi resonance which may allow to significantly increase the signal regardless of 𝜀0:

𝑃𝑛→𝑛C (𝑡) = 𝑒−Γ𝑡
𝜀2

0

((𝜔 − Δ𝐸)/2)2 + 𝜀2
0

sin2
(√︃

((𝜔 − Δ𝐸)/2)2 + 𝜀2
0𝑡

)
(3)

Such dynamical coupling may arise from a dark sector, in our case axions and ALPs are favored
candidates. Behind the scene, a treatment of the general setup is required including all the couplings
allowed in the ΔB = 2 model. To realize such scenario with 𝜀(𝑡) the couplings, 𝜙𝑛̄C𝑛, 𝑎𝑛̄C𝛾5𝑛

or 𝜕𝜇𝑎𝑛̄C𝛾𝜇𝛾5𝑛 can be used, and we considered the last two. As an outcome, the QCD axion is
almost excluded, but ALPs remain unconstrained.

2. Baryonic Axion Models

The UV coupling of a QCD axion to the baryonic sector is achieved by identifying the Baryonic
𝑈 (1)B to the Peccei-Quinn symmetry [2]. The Goldstone nature of the axion then imposes that
its linearized couplings 𝑎𝑛̄C𝛾5𝑛 appears as the expansion of the exponentiated term induced by the
Peccei-Quinn scalar field, exp (𝑖𝑎/𝑣)𝑛̄C𝑛, with 𝑣 the Peccei-Quinn scale. The reparametrization
invariance allows to render the shift invariance explicit and leaves parametric Majorana masses in
addition to the derivative coupling with the baryonic current and to the coupling with its anomaly:

L =
1
2
𝜕𝜇𝑎𝜕

𝜇𝑎 + 𝑛̄(𝑖 ̸𝜕 − 𝑚𝐷)𝑛 + 𝜕𝜇𝑎𝑛̄𝛾
𝜇𝑛 −

(
𝑚𝐿 𝑛̄

C𝑛 + 𝑚𝑅𝑛̄𝑛
C + ℎ.𝑐.

)
+ 𝛿L𝐽𝑎𝑐 (4)

The coupling to gluons required to solve strong CP is separately induced, e.g. via heavy colored
fermions à la KSVZ. The Majorana masses indicate that the neutrons are not the eigenstates,
hence the baryonic current is no longer conserved, and consequently a coupling to the Baryonic
violating currents occurs. It can be seen if one transforms the fermionic fields to realize (1), as the
transformation will mix the baryonic current with 𝜕𝜇𝑎𝑛̄

C𝛾𝜇𝛾5𝑛.
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3. Reduction of the general Lagrangian into the standard system

The mass sector can be implemented into a matrix to recast the Lagrangian with the two Weyl
fermions of the system:

𝑀 =

[
𝑚𝐿 𝑚𝐷

𝑚𝐷 𝑚𝑅

]
(5)

The kinetic sector being invariant under unitary mixing of the two fermions in this formulation, a
𝑈 (2) matrix can always be used to transform the system into (1), to analyze the oscillation [3, 4].
The mass sector is transforming as 𝑀 → 𝑈𝑇 · 𝑀 · 𝑈 under the unitary matrices which consist
of Chiral and baryonic rephasings, and of Bogolyubov rotations mixing 𝑛 and 𝑛C . The way 𝑀

transforms is known in the case of neutrinos but the explicit form of U to transform a general mass
matrix into (1) is quite complicated, see [5]. Notice that the oscillation can be turned off in the
limiting case 𝑚𝐿 = −𝑚∗

𝑅
but this requires𝑈 ≠ 1 to obtain 𝜀0 = 0. Under a transformation𝑈 ∈ 𝑈 (2)

every non-kinetic sector of the Lagrangian is affected differently, and we can mention some effects:

• The magnetic and electric dipole moments are mixed as 𝜇 → 𝜇 det𝑈 and thus only the chiral
𝑈 (1) contributes, this generalizes the standard requirement that 𝑚𝐷 and 𝜇 have their phase
aligned, to suppress the neutron electric dipole moment generated by a misalignment.

• The Weak sector is extended withΔB = 2 couplings which leads to mixing without oscillation.
The axial and vector couplings 𝑔𝐴, 𝑔𝑉 are mixed as well because of 𝑈 (1).

• The baryonic current 𝐽𝜇3 = 𝑛̄𝛾𝜇𝑛 gets mixed with theΔB = 2, CP-conserving and CP-violating
currents 𝐽

𝜇

1 = (𝑛̄𝛾𝜇𝛾5𝑛C + 𝑛̄C𝛾𝜇𝛾5𝑛) and 𝐽
𝜇

2 = 𝑖(𝑛̄𝛾𝜇𝛾5𝑛C − 𝑛̄C𝛾𝜇𝛾5𝑛) respectively. A
natural description of these mixings lies in the transformation of ®𝐽 in the 𝑆𝑂 (3) representation
associated to 𝑈 (2).

• All three fore-mentioned currents becomes anomalous in general once we reach the standard
basis, this can be understood from the ΔB = 2 weak couplings.

4. Axionic ΔB = 2 effects

After the reparametrization, the Baryonic current coupled to the axion is mixed by the unitary
transformation, the leading order can be deduced in our case as:

𝜕𝜇𝐽
𝜇

3 → 𝜕𝜇

(
𝑟1𝐽

𝜇

1 + 𝑟2𝐽
𝜇

2 + 𝐽
𝜇

3

)
+𝑂 (𝜀/𝑚𝐷), (6)

with 𝑟1 = 𝑂 (𝑚𝐿/𝑅/𝑚𝐷) and 𝑟2 = 𝑂 (𝑚𝐿/𝑅 sin 𝜙/𝑚𝐷) and 𝜙 a combination of the phases involved
initially in the mass matrix. The mixing of the currents leads to an unusual formulation of the
equivalence theorem 𝑎𝑛̄C𝛾5𝑛 ↔ 𝜕𝜇𝑎𝑛̄

C𝛾𝜇𝛾5𝑛, in terms of Ward identities. In the standard basis,
the baryonic current being not Baryon-violating cannot induce an oscillation, but 𝜕𝜇𝑎𝐽𝜇1,2 coupling
are good candidates and their non-relativistic contribution reduces to:

𝜀(𝑡) ≃ 𝜀 +
𝑟1,2

𝑣
𝜎 · ∇𝑎 (7)

3



P
o
S
(
C
O
S
M
I
C
W
I
S
P
e
r
s
2
0
2
4
)
0
6
2

Baryonic Axion in neutron-antineutron oscillation Théo Brugeat

The gradient implies a reduction by the Dark matter velocity if the axion is chosen as a DM
candidate. The oscillation induced by 𝜀 is much bigger and already constrained, and if one can
set 𝜀 = 0, the mixing produced by ΔB = 2 weak couplings constrains 𝑟1,2. Consequently, the
QCD-axion cannot produce a significant oscillation. This is bypassed by ALP’s which doesn’t
fulfill the equivalence theorem allowing to impose 𝜀 = 0 and keep the shift-symmetric coupling
only.

5. Conclusion

To conclude, we have investigated the scenario of baryonic dark matter with a focus on QCD
axions and ALPs, and we suggest that a resonance phenomenon may happen from a scalar coupling
to the 𝑛 − 𝑛̄ oscillating system.

• For QCD axions, which are Goldstone modes satisfying the equivalence theorem, we con-
cluded that their nature makes them irrelevant phenomenologically regarding the 𝑛 − 𝑛̄

oscillation. We identified the leading contribution of axionic couplings to the oscillating
𝑛 − 𝑛̄ system in a general setup. We reach the Rabi resonance we aimed at (3) but the latter
has an extra derivative than expected, proportional to the axion-wind: 𝜀(𝑡) ∝ ∇𝑎

2𝑣 .

• Axion like particles are not constrained as much as QCD axions as they can be coupled to
ΔB = 2 sector through only a derivative coupling whose coupling constant is then a free
parameter of the model. This kind of baryonic dark matter is a new sector beyond standard
model that is worth some further investigations.

• This work is transposable to the case of neutrinos for which the leptonic current may be
coupled to a majoron identified to the axion, although the flavor symmetry is enlarged, the
formalism hold and we expect that the diagonalization of the neutrino mass would mix
the currents coupled to the Goldstone mode. One significant difference in this scenario is
the reversed mass scaling between Dirac and Majorana terms which may reveal a different
phenomenology once expanded.
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