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We study natural inflation in the low energy (two-derivative) metric-affine theory containing
only the minimal degrees of freedom in the inflationary sector, i.e. the pseudo-Nambu-Goldstone
boson (PNGB) and the massless graviton. This theory contains the Ricci-like and parity-odd
Holst invariants together with non-minimal couplings between the PNGB and the aforementioned
invariants. We find regions of the parameter space where the inflationary predictions agree with
the most recent constraints at the 2𝜎 level.
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1. Introduction

Observations of the cosmic microwave background radiation (CMB) support the Universe
being flat and homogeneous at large distances. Such properties can be explained by assuming
inflation i.e. an accelerated expansion during the very early Universe. Natural inflation [1] (a.k.a.
axion inflation) was among the most popular inflationary models. Unfortunately now it is strongly
disfavored by the most recent data [2]. We make natural inflation again compatible with data by
embedding it in a non-minimal metric-affine gravity. This proceeding is based on our article [3].

2. Model

Let us consider a real scalar non-minimally coupled to a metric-affine gravity with action1:

𝑆NI =

∫
𝑑4𝑥

√−𝑔
[
𝛼(𝜙)R + 𝛽(𝜙)R̃ −

𝜕𝜇𝜙 𝜕𝜇𝜙

2
−𝑉 (𝜙)

]
, (1)

where 𝜙 is the PNGB field (i.e. the axion),

𝑉 (𝜙) ≡ Λ4
[
1 + cos

(
𝜙

𝑓

)]
(2)

is the natural-inflaton potential [1], Λ and 𝑓 are two mass scales. 𝛼(𝜙) and 𝛽(𝜙) are respectively

𝛼(𝜙) =
𝑀2

𝑃

2

[
1 + 𝜉

(
1 + cos

(
𝜙

𝑓

))]
, 𝛽(𝜙) = 𝛽0 +

𝑀2
𝑃

2
𝜉

(
1 + cos

(
𝜙

𝑓

))
(3)

so that the shift symmetry of the potential (2) is preserved. 𝑀𝑃 is the reduced Planck mass. R and
R̃ are, respectively, a scalar and pseudoscalar contraction of the curvature,

R ≡ F 𝜇𝜈
𝜇𝜈 , R̃ ≡ 1

√−𝑔 𝜖
𝜇𝜈𝜌𝜎F𝜇𝜈𝜌𝜎 , F 𝜌

𝜇𝜈 𝜎 ≡ 𝜕𝜇A 𝜌
𝜈 𝜎 − 𝜕𝜈A 𝜌

𝜇 𝜎 +A 𝜌

𝜇 𝜆
A 𝜆

𝜈 𝜎 −A 𝜌

𝜈 𝜆
A 𝜆

𝜇 𝜎 ,

(4)
where F 𝜌

𝜇𝜈 𝜎 is the curvature constructed from the connection A 𝜌
𝜇 𝜎 and 𝜖 𝜇𝜈𝜌𝜎 is the totally

antisymmetric Levi-Civita symbol with 𝜖0123 = 1. We remind that R̃ (a.k.a. the Holst invariant)
vanishes when the connection is the Levi-Civita one (Γ 𝜌

𝜇 𝜎). It has been proven [3] that action (1)
can be cast as

𝑆NI =

∫
𝑑4𝑥

√−𝑔
𝛼𝑅 −

𝜕𝜇𝜙 𝜕𝜇𝜙

2
+

𝛼
4 𝜕𝜇𝛼𝜕

𝜇𝛼 − 𝛼𝜕𝜇𝛽𝜕
𝜇𝛽 + 2𝛽𝜕𝜇𝛼𝜕𝜇𝛽

2
3

(
𝛽2 + 𝛼2

4

) −𝑉

 , (5)

where 𝑅 is the Ricci scalar (note that 𝑅 = R when A 𝜌
𝜇 𝜎 = Γ

𝜌
𝜇 𝜎). The non-minimal coupling

𝛼(𝜙)𝑅 can be removed by performing the Weyl rescaling 𝑔𝜇𝜈 → 𝑀2
𝑃

2𝛼(𝜙) 𝑔𝜇𝜈 , which requires 𝛼 > 0
in order to keep the signature of the metric. After some computations [3], we get

𝑆NI =

∫
𝑑4𝑥

√−𝑔
{

1
2
𝑀2

𝑃𝑅 − 1
2
𝑔𝜇𝜈𝜕𝜇𝜒𝜕𝜈𝜒 − 𝑈 (𝜒)

}
, (6)

1We do not introduce any other additional term in R or R̃ in order to avoid additional degrees of freedom but the
graviton and the inflaton.
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where 𝐹 (𝜙) ≡ 2𝛼(𝜙)/𝑀2
𝑃

and we have defined the Einstein frame potential as

𝑈 (𝜒) ≡ 𝑉 (𝜙(𝜒))
𝐹2(𝜙(𝜒))

. (7)

The canonically normalized scalar 𝜒 in (6) is derived from the solution of

𝑑𝜒

𝑑𝜙
≡ 𝑀𝑃√

2

√︄
1
𝛼
+ 12(𝛼′𝛽 − 𝛼𝛽′)2

𝛼2(𝛼2 + 4𝛽2)
, 𝜒(𝜙 = 0) = 0. (8)

where a prime represents a derivative with respect to 𝜙. The solution of (8) always exists because
the argument of the square root is always positive.

3. Results

In this section we discuss the inflationary predictions of the model. Before proceeding, we
remark that there is a symmetry 𝛽(𝜙) → −𝛽(𝜙) (see eq. (8)). Therefore, only the relative sign
between 𝛽0 and 𝜉 is relevant. From now on we will use the convention where 𝜉 is positive, while
𝛽0 can change sign. Hence, we can identify three different scenarios: 𝜉 ≠ 0 with 𝛽(𝜙) = 0 (not
discussed here, but presented in details in our article [3]), 𝜉 = 0 with 𝜉 > 0 and finally both 𝜉, 𝜉 > 0.

3.1 𝜉 = 0 and 𝜉 > 0

We study now the case2 where 𝜉 = 0, 𝜉 > 0 and 𝛽0 < 0. It is useful to introduce the parameters

𝛿Λ ≡ Λ

𝑀𝑃

, 𝛿 𝑓 ≡
𝑓

𝑀𝑃

, (9)

that allow to measure the natural inflation mass scales Λ and 𝑓 in terms of 𝑀𝑃. In Fig. 1 we plot the
corresponding results for the tensor-to-scalar ratio 𝑟 and the spectral index 𝑛s versus the parameters
𝜉 and 𝛿 𝑓 when 𝛽0 = −6𝑀2

𝑃
, 𝑁𝑒 = 60 and 𝛿Λ is fixed so that the amplitude of the scalar power

spectrum (𝐴s) is in agreement with data [4]. We can see that by increasing 𝜉, agreement with data
can be achieved for all the considered values of 𝛿 𝑓 . Moreover, at big enough 𝜉, the results in the
region 𝑟 ≲ 0.015 and 𝑛s ≳ 0.958 overlap, but they are still dependent on 𝑓 . Such a behaviour is
evident in Fig. 1(c). This means that by changing 𝑓 , we can find a 𝜉 so that the results instead do
not change. To clarify this feature, we plot for selected benchmark points 𝑈 (𝜒) centered at the
origin in Fig. 2(a). We can see that an inflection point is always generated. Moreover, plotting
𝑈 (𝜒) centered around the corresponding inflection point (see Fig. 2(b)), it is hard to discriminate
the different potentials around (and after) the corresponding inflection points. This is reflected in
the inflationary predictions as well, where all the lines overlap when 𝜉 ≫ 1.

3.2 𝜉 > 0 and 𝜉 > 0

In the previous scenario agreement with data was obtained only when 𝛿 𝑓 > 1, which might be
considered unnatural when looking for a UV-completion of the natural inflation setup. The issue
can be solved by using both 𝜉, 𝜉 > 0. The corresponding results are shown in Fig. 3, where, for
numerical convenience we used 10 ≲ 𝜉 ≲ 25. The lines corresponding to 𝛿 𝑓 = 10−2,−1 can only be
distinguished in the 𝛼s (the running of the spectral index) vs. 𝑛s plot. We can see that agreement at
very low 𝛿 𝑓 with all the constraints involving 𝑟 , 𝑛s and 𝛼s is only possible when 𝜉 > 0.

2The case 𝛽0 > 0 gives predictions disfavored by data [2]. More details are discussed in our article [3].
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Figure 1: 𝑟 vs. 𝑛s (a), 𝑟 vs. 𝜉 (b), 𝜉 vs. 𝑛s (c), 𝛿Λ vs. 𝜉 (d) for 𝑁𝑒 = 60 with 𝜉 = 0, 𝛽0 = −6𝑀2
𝑃

for 𝛿 𝑓

ranging from 4 (purple) to 10 (red) with steps of 1, displayed in rainbow colors. The gray areas represent the
1,2𝜎 allowed regions [2]. For reference the predictions of quadratic inflation for 𝑁𝑒 ∈ [50, 60] (brown) and
natural inflation for 𝑁𝑒 = 60 (black).
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Figure 2: 𝑈 (𝜒) (a) and 𝑈 (𝜒 − 𝜒flex) (b) with 𝜉 = 0, 𝛽0 = −6𝑀2
𝑃

and 𝑛s ≃ 0.97 (continuous) and 𝑈 (𝜒) with
𝜉 = 𝛽0 = 𝜉 = 0 (dashed) for 𝛿 𝑓 ranging from 4 (purple) to 10 (red) with steps of 1, displayed in rainbow
colors. In the continuous lines 𝜉 varies with 𝑓 such that 𝑛s ≃ 0.97. The bullets represents the corresponding
points at 𝜒𝑁 with 𝑁𝑒 = 60.
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Figure 3: 𝑟 vs. 𝑛s (a) and 𝛼s vs. 𝑛s (b) for 𝑁𝑒 = 60 with 𝛽0 = −10𝑀2
𝑃

for 𝛿 𝑓 = 10−2 (purple), 𝛿 𝑓 = 10−1

(yellow) and 𝛿 𝑓 = 1 (red) when 𝜉 = 1
3 (continuous) or 𝜉 = 0 (dashed). The pink areas represent the 1,2𝜎

allowed regions for 𝛼s vs. 𝑛s coming from the Planck legacy data [4]. The gray color codes are the same as
in Fig. 1.

4. Conclusions

We have investigated a metric-affine realization of natural inflation, featuring a PNGB potential
non-minimally coupled to the two linear-in-curvature invariants R and R̃. We have discovered
regions of the parameter space where the inflationary predictions agree with the most recent
constraints at the 2𝜎 level for both trans-Planckian and sub-Planckian values of 𝑓 .
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