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Cosmological Scalars – Theory and Tests Anne-Christine Davis

1. Introduction

There are several reasons for considering cosmological scalar fields. One such reason is that
they could help explain the mysterious dark energy. Another is that they can modify Einstein
gravity but reduce to the usual general relativity in a certain limit, thus testing Einstein relativity
in different regimes. If the scalar field couples to matter then it gives rise to an extra, fifth force,
which is severely constrained by solar system tests of gravity [1]. Consequently the fifth forces
need to be screened by inherent non-linearities in the theory so that they evade solar system tests
[2]. Screening mechanisms include chameleon screening [3, 4], the Damour-Polyakov mechanism
[5], the K-mouflage [6] and Vainshtein screenings [7]. Here we concentrate on the chameleon
and Damour-Polyakov mechanisms. These theories have standard kinetic terms, resulting in the
speed of gravitational waves being the same as that of light. They screen whereby the non-linear
interactions either cause the mass of the scalar field to depend on the environment, becoming heavy
in a dense environment and very light in a sparse environment; the chameleon mechanism, or by the
coupling to matter depending on the environment, switching off in dense environments. The latter
is the symmetron mechanism [8] and uses the Damour-Polyakov mechanism. Screening fifth forces
can be realised in both cases thanks to a new ingredient; one needs the thin shell effect, whereby the
scalar field is constant inside a massive body, constant outside and only varies in a thin shell at the
surface of the body. The fifth force depends on the gradient of the scalar field; consequently if there
is a thin shell the theory evades tests of gravity in the solar system. Such theories allow modified
gravity to be tested in the laboratory, cosmologically and astrophysically. In testing these theories
one is also testing general relativity and so this class of theories allows GR to be tested in regimes
not previously explored.

Here we review a class of scalar-tensor models with the usual quadratic kinetic terms and where
the fifth forces are screened either with the chameleon or the Damour-Polyakov mechanism. We
will not discuss the K-mouflage and Vainshtein screenings here.

2. Scalar–Tensor Theories

The class of theories we are considering have Lagrangian

𝑆 =

∫
𝑑4𝑥

√−𝑔
(
𝑀2

Pl
2

𝑅 − 1
2
(𝜕𝜙)2 −𝑉 (𝜙)

)
+ 𝑆matter [𝐴2(𝜙)𝑔𝜇𝜈

;𝜓] . (1)

with potential 𝑉 (𝜙) and a coupling to matter 𝐴(𝜙). Note this is written in the Einstein frame, but
matter moves in the Jordan frame. In the chameleon case, this reads

𝑉 (𝜙) = Λ4
(
1 + Λ𝑛

𝜙𝑛

)
, 𝐴(𝜙) = 𝑒𝜙/𝑀 (2)

where 𝑛 is an integer, Λ and 𝑀 scales specifying the model. This was originally proposed in [3].
In the presence of matter of density 𝜌m, the field does not respond only to the potential 𝑉 (𝜙) but to
the “effective potential”

𝑉eff = Λ4
(
1 + Λ𝑛

𝜙𝑛

)
+ 𝜙

𝑀
𝜌m , (3)
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The minimum of the effective potential, and hence the mass of the scalar particle, is density
dependent. The particle is massive in a dense environment, evading solar system tests, but almost
massless in sparse environments; for instance cosmologically.

For the symmetron model the effective potential is

𝑉eff (𝜙) =
1
2

( 𝜌

𝑀2 − 𝜇2
)
𝜙2 + 1

4
𝜆𝜙4 . (4)

meaning that in regions where the ambient matter density is large, 𝜌 > 𝜇2𝑀2, the effective potential
is positive and is minimised when 𝜙 = 0 but symmetry can be spontaneously broken in regions with
sufficiently small matter density 𝜌. Thus the coupling to matter ’switches off’ in dense environments,
but not in sparse ones below a critical density.

One might expect a runaway dilaton to be another model. This has potential and coupling
function of

𝑉 (𝜙) = 𝑉0𝑒
−𝛼𝜙 , 𝐴(𝜙) = 𝑒𝛽𝜙 (5)

Whilst the mass derived from the effective potential is density dependent, there is not a thin shell,so
the model will not pass solar system tests. Instead one can use the environmentally dependent dilaton
model [9] but this will not be discussed further. It should be emphasized that when considering
this class of models, it is important to test the thin shell mechanism. This happens when the field
inside an objects 𝜙in and outside 𝜙out are such that the effective coupling to matter is smaller than
the coupling outside

𝛽eff ≡ |𝜙out − 𝜙in |
2𝑚PlΦ𝑁

≤ 𝛽out (6)

where 𝛽 = 𝑚Pl
𝑑 ln 𝐴(𝜙)

𝑑𝜙
, 𝑚Pl is the reduced Planck scale and Φ𝑁 the Newtonian potential at the

surface of the object.

3. Laboratory Tests

Both chameleons and symmetrons can be tested in the laboratory. This, of course, means that
general relativity can be tested at scales not previously envisaged. The first such test was torsion
balance tests.

Torsion balance experiments have a long history of searching for fifth forces and modifications
of gravity. The underlying principle is to have one or more test masses suspended, and to look for
deflections of the test masses towards source masses by measuring the torsion in the suspension of
the test masses. The current best constraints come from the Eöt-Wash experiment[10], which uses
circular disks for the masses. The disks have holes bored into them and are arranged one above
the other, so that if there are no modifications to gravity then there is expected to be no net torque
between the two plates. Recent constraints on fifth forces are discussed in [1].

Atom interferometry is another technique to measure the external forces acting on a single
atom. It functions in a manner somewhat analogous to the classic double slit experiment. The
atom’s wave function is split into two parts, which are sent along different trajectories and then
overlapped again at a later point in time. Any difference in the quantum mechanical phase that is
accumulated along the paths results in interference at the end point. The experiment is conducted
in a vacuum chamber; a cloud of atoms is injected and subjected to laser light to split the wave

3
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packets into two. The paths recombine and the interference pattern detected. The experiment is
conducted in the presence of a test mass and any anomalous acceleration is observed. The atoms
are such that they are typically unscreened but the test mass heavy enough to be screened. The
experiment was originally proposed by[11] and performed by [12–14]. These experiments constrain
both chameleons and symmetrons over a wide range of parameter space [14, 15].

Modified gravity models can also be tested with Casimir force experiments. This is the force
between two parallel plates, placed in vacuum, due to the quantum fluctuations of the electromag-
netic field in the space between the plates. This force scales as 𝑑−4, where d is the distance between
the plates. Current experiments probe sub-mm and sub-micron distance scales [16, 17]. If fifth
forces exist they could also be detected by an experiment searching for Casimir effects. These
experiments are particularly sensitive to screening through the thin-shell effect. The chameleon
force (per unit area) between two plates scales as [18]

𝐹𝑐ℎ𝑎𝑚

𝐴
≈ 𝑑−

2𝑛
𝑛+2 (7)

The plates need to be perfectly parallel, an experimental challenge, so it is easier to search for
the Casimir effect with a plate and sphere. Usually the proximity force approximation is used to
compute the force, Originally this was used for chameleon models [18] as well, but this is less
reliable when the underlying theory is non-linear, as is the case for chameleon and symmetron
models. A Casimir experiment has been performed using a rotating plate with trenches and a
sphere such that the sphere samples the force at two different distances [17]. Whilst the actual
configuration is not ideal, one can use this experiment as the basis to make forecasts for future
experiments. Detailed forecasts were made for the symmetron model [19]. Two approximations
were made; the proximity force approximation whereby each spherical element at the surface of
the sphere can be approximated by its tangent plane and the interaction between the sphere and the
plate can be obtained as the sum of all the elemental pressures on the tangent planes exerted by
the infinitely large plate and the small sphere approximation. In addition, numerics were used and
overall forecasts made. A similar analysis was performed for the chameleon model. Here it was
found that, due to the non-linearities of the theory, the PFA approximation completely failed, but
the small sphere approximation matched the numerical code closely [20]. Our results can be seen
in Fig 2. In can also be possible to construct an experiment where a neutral gas, such as xenon,
is injected into the vacuum chamber and the Casimir force measured between the case in vacuum
and with the neutral gas [21]. In this case the chameleon force switches off in the presence of the
neutral gas. This experiment is in progress [22].

4. Atomic Spectra

Due to the coupling between the scalar field and ordinary matter modified gravity theories can
give rise to shifts in spectral lines. If the fifth force contribution to the electron’s Hamiltonian is
𝛿𝐻, the perturbation to the electron’s energy levels are given by the classical formula

𝛿𝐸𝑛 = ⟨𝜓𝑛 |𝛿𝐻 |𝜓𝑛⟩ (8)

The perturbation to the electron’s Hamiltonian is

𝛿𝐻 = 𝑚𝑒𝐴(𝜙) . (9)

4
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Figure 1: Scalar field (dashed line) contributions at one-loop order to the magnetic moment of the muon. Reproduced from [24].

We can compute the perturbation to the 1𝑠 and 2𝑠 energy levels and then compute the shift in the
lowest energy spectral line for hydrogen due to modified gravity

𝛿𝐸1𝑠−2𝑠 = 𝐴,𝜙 (𝜙out)2 3𝑚𝑁𝑚𝑒

16𝜋𝑎0
, (10)

The 1𝑠 − 2𝑠 transition of hydrogen has been measured to a high accuracy giving the uncertainty of
𝛿𝐸1𝑠−2𝑠 = 5.1 × 10−10 eV, enabling us to constrain the parameters of our modified gravity theories
[23]. Before we display the constraints we will first consider muonium, a hydrogen-like system
consisting of a single electron orbiting an anti-muon. Since the muon is a fundamental particle this
has the advantage over hydrogen. The muon is always unscreened and thus a highly sensitive probe
for modified gravity theories. The constraints are displayed in Fig 2 and Fig 3.

Finally we can consider the effect of the modified gravity scalar on the anomalous magnetic
moment of the electron and the muon. In both cases there is a classical effect and a quantum effect
to take into consideration. For the electron the modified gravity scalar mildly shifts the energy of
the electron eigenstates in the Penning trap. For the muon the scalar adds a contribution to the
angular velocity vector in the cyclotron. The quantum corrections are given in Fig. 1.

Fermilab measured the anomalous magnetic moment of the muon using a cyclotron. The
experimental value of 𝑎𝜇 measured is larger than the standard model prediction, by an amount

𝛿𝑎𝜇 = 𝑎𝜇,exp − 𝑎𝜇,th = 2.51 × 10−9 (11)

A modified gravity scalar field can alleviate the tension if

𝛿𝑎𝜇 ≈
𝑚𝜇

𝑞𝐵

1
𝛾𝑣

𝜕𝜙 ln 𝐴| ®∇𝜙 | + 2(𝜕𝜙 ln 𝐴)2
(𝑚𝜇

4𝜋

)2
𝐼1

(
𝑚0
𝑚𝜇

)
, (12)

where the first and second terms are the classical and quantum corrections to the anomalous spin
precession, respectively. This can be computed for both chameleons and symmetrons in order to
see if modified gravity can explain the discrepancy, or conversely whether the anomalous magnetic
moment of the muon can be used to constrain the theory parameters. There is a region of parameter
space for both chameleons and for symmetrons that can account for this discrepancy [25]. Similarly
we can use the experimental results for the electron dipole moment, this time using a Penning trap,
to constrain modified gravity models [24].

Putting this all together we come up with the following constraints on the modified gravity
parameters from laboratory experiments. In the figures we see that both chameleons and symmetrons
are now tightly constrained, though there is a region of parameter space left unconstrained.

5
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Figure 2: Bounds on chameleon theory parameter space for 𝑛 = 1. The red line indicates chameleon models that alleviate the muon
𝑔 − 2 tension [25]. We see that muonium rules out approximately half of those models.

5. Coupling to Photons

We can also consider the coupling of the scalar particles to photons, either with a direct coupling
or a disformal coupling. The direct coupling takes the form

𝛽𝛾
𝜙

𝑀𝑝𝑙

𝐹2, 𝛽𝛾
𝜙2

𝑀2
𝑝𝑙

𝐹2 (13)

for the chameleon and symmetrons respectively. Indeed Bekenstein showed that the most general
coupling of a scalar field to matter is [26]

𝑔𝜇𝜈 = 𝐴2(𝜙, 𝑋)𝑔𝐸𝜇𝜈 + 𝐵2(𝜙, 𝑋)𝜕𝜇𝜙𝜕𝜈𝜙 (14)

with the disformal term automatically giving rise to a coupling to photons. Here 𝑔𝐸𝜇𝜈 is the Einstein
metric.

The coupling between the scalar and photons can result in the conversion of photons into scalar
particles in the presence of a magnetic field, and vice versa. It has been discussed in the laboratory,
firstly in relation to the anomalous PVLAS results [27] and as a way to detect chameleons via an
’afterglow’ [28] and astrophysically [29]. Some constraints are discussed in [1]. More recently this
was used in [30] when considering the direct detection of dark energy with the XENON1T detector.
The anomalous results were shown to be explained with a chameleon model by considering just
the strong magnetic field in the tachocline. Subsequently the production of chameleons throughout

6
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Figure 3: Bounds on symmetron models with mass at the dark energy scale 𝜇 = meV. We see that hydrogen is the leading constraint
when the proton is unscreened. Meanwhile muonium bounds are comparable to those from electron 𝑔 − 2 experiments [24].

the sun has been computed [31]. This is discussed by Tom O’Shea, these proceedings. The
corresponding case of symmetrons has yet to be considered, though this is in progress.

6. Discussion

We have briefly reviewed cosmological scalar particles, in particular the chameleon and sym-
metron models. Since such scalar particules are very light and of gravitational strength they can
modify Einstein gravity, enabling gravity to be tested in environments not previously envisaged.
They could be potentially detected in laboratory experiments, giving rise to constraints on the
model parameters. Such scalars can also couple to photons resulting in the possibility of potential
detection in solar experiments in a similar way to axions. This has been briefly introduced for the
chameleon. It is also possible for symmetrons to play a role in solar physics. This is currently in
progress.
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