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Ultra-high-energy neutrinos and cosmic rays are excellent probes of astroparticle physics phenom-
ena. For astroparticle physics analyses, robust and accurate reconstruction of signal parameters
like arrival direction and energy is essential. Current reconstruction methods ignore bin-to-bin
noise correlations, which limits reconstruction resolution and so far has prevented calculations
of event-by-event uncertainties. In this work, we present a likelihood description of neutrino
or cosmic-ray signals in a radio detector with correlated noise, as present in all neutrino and
cosmic-ray radio detectors. We demonstrate with a toy-model reconstruction that signal param-
eters such as energy and direction, including event-by-event uncertainties with correct coverage,
can be obtained. Additionally, by correctly accounting for correlations, the likelihood description
constrains the best-fit parameters better than alternative methods and thus improves experimental
reconstruction capabilities.
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1. Introduction

In this contribution, we present a probabilistic description of voltage time-traces recorded
in radio detectors with band-limited noise and a deterministic neutrino or cosmic-ray signal. The
probabilistic description can be viewed as the likelihood for a signal given the measured traces and is
thus the optimal objective function for reconstruction. We demonstrate with a toy-model that, when
using the likelihood description, the signal parameters can be reconstructed with uncertainties,
the uncertainties give correct coverage, and the reconstruction resolution improves compared to
previous methods.

In recent years, radio detectors have proven to be powerful tools for probing ultra-high-energy
astroparticle phenomena. The radio detection technique has been successfully employed in cosmic-
ray air shower observatories, such as the Pierre Auger Observatory and LOFAR, and has yielded
accurate estimation of arrival direction, shower maximum, and energy with precision competitive
to other established methods [1]. In the field of neutrino astronomy, radio detectors have emerged
as the most promising approach to detect the yet undiscovered ultra-high-energy neutrino flux at
PeV energies and above [2]. Several prototype in-ice radio arrays, such as ARIANNA and ARA,
along with balloon experiments, like ANITA, have demonstrated the viability of this technique.
Furthermore, the construction of larger in-ice arrays, such as RNO-G, is ongoing.

In any astroparticle physics analysis involving radio-detected signals, robust and accurate
estimation of the signal parameters is crucial. For cosmic-ray and neutrino signals, the parameters
of interest are the energy of the primary particle and its arrival direction. Additionally, for cosmic-
ray studies, the shower maximum is an important proxy for the composition.

Several successful methods for reconstructing neutrino or cosmic-ray signals in radio detectors
have been presented in recent years. These are either based on summary statistics calculated for
each antenna observing the signal (e.g. signal arrival time, maximum amplitude, and fluence), or
they use the full time-trace measured by each antenna. In general, the time-traces hold all available
information and should result in optimal reconstruction, however, since antenna responses and
other detector effects can be challenging to model and measure, methods using summary statistics
sometimes result in a more stable reconstruction.

The current method for in-ice radio detectors is the forward folding technique [3], in which the
radio emission of the neutrino or cosmic-ray interaction is calculated, propagated through the given
medium, and folded through the antenna and hardware response to obtain the signal as it would
appear in the recorded time-trace. The predicted signal is then compared to a measured time-trace,
where bin-by-bin the chi-square between the predicted and measured voltage is calculated and
summed over all bins and antennas:

𝜒2 =

𝑛ant∑︁
i=1

𝑛𝑡−1∑︁
k=0

[𝑉𝑖,𝑘 − 𝜇𝑖,𝑘 (𝜃)]2

𝜎2
𝑘

, (1)

where 𝑉𝑖,𝑘 is the measured voltage in the 𝑖th antenna and 𝑘 th time bin, 𝜇𝑖,𝑘 (𝜃) is the predicted
signal parameterized by 𝜃, 𝜎𝑘 is the root mean square (RMS) of the noise in the 𝑘 th antenna, 𝑛ant

is the number of antennas, and 𝑛𝑡 is the number of time bins. This 𝜒2 is then used as an objective
function to minimize in a reconstruction of signal parameters, which has been shown to work well
for reconstruction of electrical fields from cosmic rays and neutrino signals [3–5]. While references
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[3, 4] are simulation studies, reference [5] used the forward folding technique to reconstruct cosmic
rays measured by the ARIANNA detector and demonstrates the applicability of the method under
experimental conditions.

However, the 𝜒2 expressed in Equation (1) can not be used to estimate uncertainties on the
reconstructed parameters on an event-by-event basis. The reason for this is that the noise present in
radio detectors is not white noise, but can, in general, be characterized as band-limited, which results
in correlations between neighboring bins in the time domain. Since the correlations are not taken
into account in the 𝜒2, it is not 𝜒2-distributed and can thus not be used to estimate uncertainties.
Instead, the correct probabilistic description of band-limited noise plus a deterministic signal, which
takes the correlations in the noise into account, is needed to calculate the likelihood for a signal.
We present such a model in this work.

2. Probabilistic noise model

We model the band-limited noise plus a deterministic signal in a time-trace as a multivariate
normal distribution with dimensionality equal to the length of the trace, 𝑛𝑡 . The probability density
of measuring any trace 𝒙 = (𝑉0, ..., 𝑉𝑛𝑡−1) is then:

𝑝
(
𝒙; 𝝁(𝜃),𝚺

)
=

1√︁
(2𝜋)𝑛𝑡 |𝚺 |

exp
(
− 1

2
(
𝒙 − 𝝁(𝜃)

)T𝚺−1 (𝒙 − 𝝁(𝜃)
) )
, (2)

where 𝝁(𝜃) = (𝜇0(𝜃), ..., 𝜇𝑛𝑡−1(𝜃)) is the signal (zeros if no signal is present) parameterized by
𝜃, 𝚺 is the covariance matrix of the noise, and |𝚺 | is its determinant. The covariance matrix can
be estimated from many traces consisting purely of noise via the estimate of the autocovariance
function:

Cov(𝑡𝑘 , 𝑡𝑘′) =
1
𝑁

𝑁∑︁
𝑛=1

(𝑥𝑛,𝑘 − 𝑥𝑘) (𝑥𝑛,𝑘′ − 𝑥𝑘′), (3)

where 𝑁 is the number of traces and 𝑥𝑘 is the mean of the 𝑘 th time bin, which is zero for traces of
pure noise. By assuming the covariance matrix is a symmetric circulant matrix, the elements only
depend on Δ𝑡𝑚 = 𝑡𝑘′ − 𝑡𝑘 , where 𝑚 = 𝑘 ′ − 𝑘 , and we can average over elements with the same Δ𝑡𝑚:

⟨Cov(Δ𝑡𝑚)⟩ =
1
𝑛𝑡

𝑛𝑡−1∑︁
𝑘=0

𝑛𝑡−1∑︁
𝑘′=0

𝛿𝑘, (𝑘′−𝑚)Cov(𝑡𝑘 , 𝑡𝑘′). (4)

where 𝛿 is the Kronecker delta. The elements of the covariance matrix are then:

𝚺𝑘𝑘′ = ⟨Cov(Δ𝑡𝑘′−𝑘)⟩. (5)

The circulant structure of the covariance matrix reflects that the noise correlations are invariant under
time translation and are periodic. Although the periodic assumption is not physically accurate, since
it implies correlations between the first and last bins of a trace, it has minimal impact on this work
as the signals considered can be assumed not to be close to the edges of the traces. Alternatively,
a Toeplitz structure can be employed, which does not impose the periodic constraint. However,
the circulant structure is more numerically stable and simplifies the implementation, and is thus
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Figure 1: Left: Band-limited frequency spectrum, which is typical for radio detectors. Frequency amplitudes
below 1h of the maximum height of the spectrum are set to 0 to avoid numerical instabilities. Right:
Covariance matrix corresponding to the spectrum represented as an image (zoom in on the first 50 ns).

used in the following. An example of a typical frequency spectrum for radio detectors and the
corresponding covariance matrix estimated from 10000 realizations of noise are shown in Figure 1.

We note that the multivariate normal distribution (Equation (2)) depends on the inverse of
the covariance matrix, which can only be calculated if it is full rank. The covariance matrix is,
however, not full rank when any frequency amplitudes are exactly zero. In this case, the multivariate
normal distribution is calculated by replacing the inverse with the Moore-Penrose pseudo inverse
𝚺−1 → 𝚺+, the determinant with the pseudo-determinant |𝚺 | → |𝚺 |+, and 𝑛𝑡 with two times the
number of non-zero frequency amplitudes 𝑛𝑡 → 𝑛dof, which is the number of degrees of freedom.

3. Likelihood reconstruction

The multivariate normal probability of Equation (2) can be viewed as the likelihood for a signal
given a trace. When the signal is present in many antennas, the full likelihood for the signal is the
product of the likelihood for each antenna in the detector. The minus two log-likelihood is then:

−2 lnL(𝝁(𝜃); 𝒙,𝚺) =
𝑛ant∑︁
𝑖=1

(
𝒙𝑖 − 𝝁𝑖 (𝜃)

)T𝚺−1
𝑖

(
𝒙𝑖 − 𝝁𝑖 (𝜃)

)
+ 𝑐𝑜𝑛𝑠𝑡. (6)

where 𝒙, 𝝁𝑖 (𝜃), and 𝚺𝑖 are the trace, signal, and covariance matrix of the 𝑖th antenna, and the
constants can be ignored since, in general, only delta log-likelihoods are of interest, i.e., likelihood
ratios. To demonstrate that the likelihood description can be used to reconstruct signals and estimate
uncertainties on the reconstructed parameters, we perform a toy-model reconstruction of a simplified
neutrino signal in a toy-model in-ice radio detector. The neutrino signal calculation and detector
simulation are performed using NuRadioMC [6] and NuRadioReco [3].

The toy-model detector layout is a typical “deep” station layout similar to the design of the
ARA detector at the South Pole [7] and RNO-G in Greenland [8], and similar to the deep detector
component foreseen for IceCube-Gen2 [9]. It consists of 12 antennas in total, located in three holes
in the ice. Each string has both a vertically polarized (VPol) and a horizontally polarized (HPol)
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antenna at 80 m depth and the same at 100 m depth. The coordinates of the strings in the horizontal
plane (𝑥,𝑦) are (0 m, 0 m), (20 m, 0 m), and (0 m, 20 m) which form a right isosceles triangle.

The Askaryan radio emission from the neutrino interaction is calculated using the Alvarez2009
[10] parameterization as implemented in NuRadioMC, assuming a hadronic shower. The most
computationally intensive part of the signal calculation is the propagation of the radio signal through
the ice. For ease of computation, we thus neglect the refraction of radio waves in non-uniform
media and assume the signal travels in a straight line from the interaction vertex to the detector.
This simplification does not affect the conclusions of this work. After the signal is propagated
through the ice, it is folded through the antenna response, and noise is added to the resulting trace.
The noise is generated with the frequency spectrum shown in Figure 1, which is typical for radio
detectors. We set the noise temperature to 300 K. The traces are 𝑛𝑡 = 1024 samples long and have
a sampling rate of 1.6 GHz.

The resulting neutrino signal observed in the detector depends on seven parameters: the shower
energy, 𝐸shower, the neutrino arrival direction zenith and azimuth angles, 𝜃𝜈 and 𝜙𝜈 , the interaction
vertex position in spherical coordinates, 𝑟vertex, 𝜃vertex and 𝜙vertex, and the signal arrival time, 𝑡0.
These are the parameters we aim to estimate in a reconstruction. In this work, the results for three
representative example events are shown, labeled event 1, 2, and 3. The Monte Carlo truth values
of the parameters for the three events are shown in Table 1. The traces in all 12 antennas for Event
3 with one realization of noise is shown in Figure 2.

Event 𝐸shower 𝜃𝜈 𝜙𝜈 𝑟vertex 𝜃vertex 𝜙vertex 𝑡0

1 100 PeV 70◦ 25◦ 800 m 135◦ 30◦ 200 ns
2 100 PeV 70◦ 45◦ 800 m 100◦ 100◦ 200 ns
3 100 PeV 90◦ 1◦ 700 m 135◦ 45◦ 200 ns

Table 1: True parameter values for the three example events shown in this work.
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Figure 2: Traces for the 12 antennas of the toy-model in-ice radio detector with a neutrino signal (Event 3
in Table 1) and band-limited noise (left panel in Figure 1).
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The reconstruction is performed by minimizing the −2 lnL(𝝁(𝜃); 𝒙,𝚺) of Equation (6) with
respect to the neutrino signal parameters 𝜃 = (𝐸shower, 𝜃𝜈 , 𝜙𝜈 , 𝑟vertex, 𝜃vertex, 𝜙vertex, 𝑡0) using the
iminuit [11] MIGRAD algorithm. To investigate the ideal case where the global minimum of the
likelihood can be found, the parameters are initialized at the true values in the minimization process.

To estimate uncertainties on a subset of the reconstructed parameters, we perform a profile
likelihood scan. In many physics analyses, the primary parameters of interest are the neutrino energy
or the arrival direction, while the remaining parameters can be treated as nuisance parameters and
profiled over. In this study, we focus specifically on the neutrino arrival direction. The profile
likelihood scan procedure is as follows: First, the reconstruction is performed with all parameters
free to find the global minimum of the −2 lnL, denoted as −2 lnL(𝜃). Then, a grid is defined in
𝜃𝜈 and 𝜙𝜈 , and for each point in the grid, a minimization is performed with 𝜃𝜈 and 𝜙𝜈 fixed at the
corresponding values. This yields a −2 lnL value for each alternative hypothesis, which we denote
−2 lnL(𝜃′). According to Wilks’ theorem [12] the −2Δ lnL = −2[lnL(𝜃true) − lnL(𝜃)] between
the best fit and true parameter values follows a 𝜒2-distribution with 2 degrees of freedom when
profiling over the nuisance parameters. The −2Δ lnL = −2[lnL(𝜃′) − lnL(𝜃)] between the best fit
and the alternative hypothesis can then be used to determine a confidence level for each point in the
grid and draw uncertainty contours for the neutrino arrival direction. The reconstructed neutrino
arrival directions, along with uncertainty contours derived from the profile likelihood scans for the
three example events with one realization of noise each, are displayed in the top row of Figure 3.
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Figure 3: Top: Profile likelihood scans for the three example events listed in Table 1 with one realization
of noise each along with the reconstructed arrival direction, 1𝜎 uncertainty contours, and the true arrival
direction. Bottom: Coverage for 100 trials of the same neutrino signals with different realizations of noise
for the three example events using the −2 lnL expressed in Equation (6) presented in this work along with
the coverage using the 𝜒2 with no correlation taken into account shown in Equation (1).
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The validity of the estimated uncertainties can be verified by repeating the reconstruction
many times using the same true parameter values and different realizations of noise. For any
confidence level, we can then count how many times the true value would have been within the
corresponding uncertainty contours, which gives the coverage. The confidence versus coverage is
shown in the bottom row of Figure 3 for 100 trials of each of the three example events. The figure
shows that the coverage is correct for any confidence level for the true parameter values tested here.
Using the likelihood description presented in this work, we can thus reconstruct neutrino signals
in radio detectors with band-limited noise and correctly estimate uncertainties on the reconstructed
parameter values.

In order to investigate the impact of using the likelihood description, we repeat the reconstruc-
tion using the 𝜒2 as expressed in Equation (1) as the objective function which does not take the
correlations between bins into account. In this case, the reconstruction does successfully return
best-fit parameters, however, two issues are present. First, if the 𝜒2 is assumed to be 𝜒2-distributed
and used to estimate uncertainties on the reconstructed parameters, the coverage is completely
wrong, which is shown in the dotted lines in the bottom row of Figure 3. Hence, uncertainties
can not be estimated for measured neutrinos, as resimulation with different noise realizations is
only possible in simulation studies. Second, the reconstructed parameters for 100 trials have a
significantly larger spread around the true values. The spread of the seven reconstructed parameters
for 100 trials of the three example events using the two objective functions is shown in Table 2.
This result emphasizes that to achieve the best possible reconstruction resolution of signals in radio
detectors, the correct likelihood description is needed, which employs the information about the
correlations in the noise.

Event Method 𝜎𝐸shower 𝜎𝜃𝜈 𝜎𝜙𝜈
𝜎𝑟vertex 𝜎𝜃vertex 𝜎𝜙vertex 𝜎𝑡0

1
−2 lnL

𝜒2
28%
30%

1.4◦

1.9◦
9.6◦

12◦
134 m
154 m

0.59◦

0.67◦
0.099◦

0.12◦
0.15 ns
0.18 ns

2
−2 lnL

𝜒2
40%
66%

4.3◦

7.0◦
2.2◦

6.1◦
31 m
42 m

0.044◦

0.072◦
0.11◦

0.16◦
0.16 ns
0.24 ns

3
−2 lnL

𝜒2
7.5%
16%

1.4◦

2.5◦
1.7◦

2.9◦
32 m
66 m

0.20◦

0.40◦
0.031◦

0.051◦
0.055 ns
0.11 ns

Table 2: Spread (standard deviation) of the reconstructed parameter values for 100 trials of the three example
events listed in Table 1 minimizing the−2 lnL presented in Equation (2) in this work compared to minimizing
the 𝜒2 expressed in Equation (1), which does not take correlation into account.

4. Summary and outlook

In this work, we have presented a likelihood description of a deterministic signal in a radio
detector with band-limited noise. The likelihood allows us to obtain uncertainties on the recon-
structed parameters, which was not possible with previous approaches. We have demonstrated with
a toy-model study using this likelihood description that the uncertainties have correct coverage. We
also find that the Likelihood yields smaller uncertainties for in-ice neutrino reconstruction compared
to the previously employed 𝜒2 function that does not take into account correlations.
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The likelihood description is generally a strong tool with several additional applications cur-
rently being investigated. Since the likelihood ratio is the best test statistic to compare two hy-
potheses, it can be used to separate signal from background. This fact can potentially be used to
improve the identification of cosmic-ray signals in in-ice radio detectors, like in the cosmic-ray
search recently performed with the ARIANNA detector [5]. Second, the likelihood description
provides a way to calculate a goodness-of-fit for a reconstructed signal. For a reconstructed signal
that describes the measured trace well, the −2 lnL in Equation (2) (ignoring the constants) should
be 𝜒2-distributed with degrees of freedom equal to the number of samples in the trace from which a
p-value can be calculated. Finally, the covariance matrix discussed in Section 2 can be used to cal-
culate the Fisher information matrix for a detector and set of signal parameters. The inverse Fisher
information matrix gives an estimate of the uncertainties and correlations of the signal parameters
without the need to perform any reconstruction. The likelihood description presented in this work
is thus potentially also useful in the prospect of end-to-end detector optimization.
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