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tainties. Therefore the errors obtained in the Parton Distribution Functions that are extracted from
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In this paper, we discuss an approach where these "errors on errors" can be incorporated into a
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Distribution Data [4] and investigate the information that this model implies about these two data
sets.
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1. Introduction
Experimental errors are becoming extremely precise and are now dominated by systematic

uncertainties. However, there are often significant errors in the determination of these systematic
errors. Therefore, it is becoming increasingly important that these "errors on errors" are incorporated
into our Parton Distribution framework such that the extracted errors incorporate this extra layer of
uncertainty. In this short document, we demonstrate how it is possible to achieve this.

2. Derivation of the Model
Consider a set of data, y. The probability of y can be written 𝑃(y|𝜇, 𝜃), where 𝜇 are parameters

of interest and 𝜃 are nuisance parameters that are required for the correctness of the model. If
we let 𝜃 = (𝜃1, ..., 𝜃𝑁 ) be independent Gaussian distributed values 𝑢 = (𝑢1, ..., 𝑢𝑁 ), with standard
deviations 𝜎𝑢 = (𝜎𝑢1 ..., 𝜎𝑢𝑁

), then the Likelihood function can be written as:

𝐿 (𝜇, 𝜃) = 𝑃(y, u|𝜇, 𝜃) = 𝑃(y|𝜇, 𝜃)𝑃(u|𝜃)

= 𝑃(y|𝜇, 𝜃)
𝑁∏
𝑖=1

1
√

2𝜋𝜎𝑢𝑖

𝑒
−(𝑢𝑖−𝜃𝑖 )2/2𝜎2

𝑢𝑖 (1)

However, 𝜎𝑢𝑖 maybe uncertain. One way to incorporate this uncertainty in 𝜎𝑢𝑖 has been proposed
in [1]. In this proposal we model the estimated variances, 𝑣𝑖 , of 𝜎2

𝑢𝑖
, as Gamma distributed, which

allows us to rewrite equation 1 as:

𝐿 (𝜇, 𝜃, 𝜎2
𝑢𝑖
) = 𝑃(𝑦 |𝜇, 𝜃)

𝑁∏
𝑖=1

1
√

2𝜋𝜎𝑢𝑖

𝑒
−(𝑢𝑖−𝜃𝑖 )2/2𝜎2

𝑢𝑖

𝛽
𝛼𝑖

𝑖

Γ(𝛼𝑖)
𝑣
𝛼𝑖−1
𝑖

𝑒−𝛽𝑖𝑣𝑖 (2)

where 𝛼𝑖 = 1/(4𝑟2
𝑖
), 𝛽𝑖 = 1/(4𝑟2

𝑖
𝜎2
𝑢𝑖
) and 𝑟𝑖 is defined as the relative uncertainty in the estimate of

the systematic error. The parameters 𝑟𝑖 can therefore be referred to as the "error on errors". This
model can be reinterpreted as a Student’s t-distribution, once we make a small change of variables:

𝐿 (𝜇, 𝜃, 𝜎2
𝑢𝑖
) = 𝑃(𝑦 |𝜇, 𝜃)

𝑁∏
𝑖=1

Γ( 𝜈𝑖+1
2 )

√
𝜈𝑖𝜋Γ(𝜈𝑖/2)

(
1 +

𝑡2
𝑖

𝜈𝑖

)− 𝜈𝑖+1
2

(3)

where 𝑡𝑖 = 𝑢𝑖−𝜃𝑖√
𝑣𝑖

and 𝜈𝑖 =
1

2𝑟2
𝑖

. Therefore, we can treat our nuisance parameters as t-distributed!
Now we want to extend this model to incorporate correlated systematic errors. So consider:

𝑦𝑖 = 𝑑𝑖 + 𝑒𝑟𝑟𝑜𝑟𝑠 = 𝑑𝑖 + 𝜎𝑖𝑧𝑖 + 𝜎𝑢𝑖 𝑡𝑢𝑖 +
𝑀∑︁
𝑗=1

𝛽𝑖 𝑗 𝑡
′
𝑗 (4)

where for each observable 𝑦𝑖 we have one statistical error 𝜎𝑖 , with a 𝑧𝑖 that is a Normally distributed
fluctuating variable, one uncorrelated systematic error𝜎𝑢𝑖 with a 𝑡𝑢𝑖 that is a t-distributed fluctuating
variable with dof of 𝜈 = 1/2𝑟2

𝜒2 , and M correlated systematic errors, 𝛽𝑖 𝑗 , each with a fluctuation 𝑡′
𝑗

that are t-distributed with degree of freedom of 𝜈 = 1/2𝑟2
𝜒2 .

If we treat all the t-distributions as independent 1, then the Log-likelihood function, once we
have maximized with respect to 𝑧𝑖 , can be written up to some constants as:

1Note that if we treated the t-distributions as a Multi-variate t-distribution with zero correlation between all the 𝑡𝑢

and the 𝑡′, then the likelihood function would be different.

2
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−2𝐿𝑛𝐿 =

𝑁∑︁
𝑖=1

(
𝑚𝑖 − 𝑑𝑖 − 𝜎𝑢𝑖 𝑡𝑢𝑖 −

∑
𝑗 𝛽𝑖 𝑗 𝑡

′
𝑗

𝜎𝑖

)2

+(𝜈 + 1)
𝑁∑︁
𝑖=1

𝐿𝑛

(
1 +

𝑡2𝑢𝑖
𝜈

)
+ (𝜈 + 1)

𝑀∑︁
𝑗=1

𝐿𝑛

(
1 +

𝑡′2𝑗

𝜈

)
≡ 𝜒2 (5)

where we can define this to be a 𝜒2 once we have minimized simultaneously with respect to both
𝑡𝑢𝑖 and 𝑡′ 𝑗 .

3. The case of Statistical and uncorrelated systematic errors only
Let’s initially consider the case of only statistical and uncorrelated systematic errors. In this

case we can write 𝑦𝑖 = 𝑑𝑖 + 𝜎𝑖𝑧𝑖 + 𝜎𝑢𝑖 𝑡𝑢𝑖 , where 𝑧𝑖 ∼ 𝑁 (0, 1), 𝑡𝑢𝑖 ∼ 𝑡 (0, 𝜈 = 1/2𝑟2
𝐷𝑖𝑠𝑡

). That is, we
are drawing our 𝑦 from a distribution where the statistical errors are normally distributed and the
uncorrelated systematic errors are t-distributed.

Using numerical integration we can investigate the expectation of 𝜒2, 𝐸 [𝜒2], and the Variance
of 𝜒2, 𝑉𝑎𝑟 [𝜒2]. In Figure 1 we plot the 𝐸 [𝜒2] as a function of 𝑟𝐷𝑖𝑠𝑡 , where the 𝐸 [𝜒2] has been
calculated at various different 𝑟2

𝜒. As can be seen, the expectation is a growing function of 𝑟𝐷𝑖𝑠𝑡 ,
even if 𝑟𝜒2 = 𝑟𝐷𝑖𝑠𝑡 . In Figure 2 we plot 𝑉𝑎𝑟 [𝜒2]/2 as a function of 𝑟𝐷𝑖𝑠𝑡 . This plot shows that the
𝑉𝑎𝑟 [𝜒2]/2 is a similarly increasing function of 𝑟𝐷𝑖𝑠𝑡 , even as 𝑟𝜒2 is increased.
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Figure 1: Graph of 𝐸 [𝜒2] as a Function of 𝑟𝐷𝑖𝑠𝑡 for
4 different 𝑟𝜒2 (𝜎𝑖 = 𝜎𝑢𝑖 = 1)
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Figure 2: Graph of𝑉𝑎𝑟 [𝜒2]/2 as a Function of 𝑟𝐷𝑖𝑠𝑡

for 4 different 𝑟𝜒2 (𝜎𝑖 = 𝜎𝑢𝑖 = 1)

In the case of only normally distributed statistical and t-distributed uncorrelated systematic
errors, the standard deviation of the simple mean, 𝑦𝑚𝑒𝑎𝑛 =

∑𝑁
𝑖=1 𝑦𝑖/𝑁 , is given by:

𝜎𝑀𝑒𝑎𝑛 ≈

√︃∑𝑁
𝑖=1 𝜎

2
𝑖
+ 𝜎2

𝑢𝑖𝜈/(𝜈 − 2)
𝑁

=

√︃∑𝑁
𝑖=1 𝐸 [𝜒2

𝑖
(𝑟𝜒2 → 0)] (𝜎2

𝑖
+ 𝜎2

𝑢𝑖 )
𝑁

(6)

In Table 1, we show how 𝜎𝑀𝑒𝑎𝑛 behaves as a function of 𝑟 and 𝑁 (with 𝜎𝑖 = 𝜎𝑢𝑖 = 1). As can be
seen for all the cases of N, the ratio of 𝜎𝑟𝐷𝑖𝑠𝑡=0.408/𝜎𝑟𝐷𝑖𝑠𝑡=0.0001 ≈ 1.4.

The next question we want to ask is what happens if we minimize the 𝜒2, calculated with
𝑟𝜒2 = 𝑟𝐷𝑖𝑠𝑡 , with respect to our mean? That is, what is the standard deviation of the fitted mean,

3
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𝑟𝐷𝑖𝑠𝑡 N=2 N=10 N=500 Ratio
0.001 0.995 0.449 0.064 1.000
0.100 0.991 0.452 0.064 1.005
0.250 1.092 0.481 0.069 1.077
0.300 1.122 0.504 0.071 1.108
0.408 1.417 0.637 0.089 1.393

Table 1: Table showing 𝜎𝑚𝑒𝑎𝑛 as a function of
𝑟 and 𝑁 (with 𝜎𝑖 = 𝜎𝑢𝑖 = 1). The last col-
umn given the Ratio 𝜎𝑟𝐷𝑖𝑠𝑡

𝜎(𝑟𝐷𝑖𝑠𝑡=0.001)
for the case of

N=500.

𝑟𝐷𝑖𝑠𝑡 N=2 N=10 N=500 Ratio
0.001 0.995 0.449 0.064 1.000
0.100 0.991 0.452 0.064 1.004
0.250 1.092 0.479 0.068 1.069
0.300 1.122 0.493 0.069 1.087
0.408 1.417 0.547 0.076 1.393

Table 2: Table showing 𝜎𝐹𝐼𝑇 as a function of
𝑟 and 𝑁 (with 𝜎𝑖 = 𝜎𝑢𝑖 = 1). The last column
given the Ratio 𝜎𝐹𝐼𝑇

𝜎(𝑟𝐷𝑖𝑠𝑡=𝑟𝜒2 =0.001)
for the case of

N=500.

N M r
2 2 0.001 500000 1.99949 2.05734 1.58114 1.58114 1.000 1.000
2 2 0.25 8 2.28779 2.31064 1.78103 1.78970 1.005 1.132
2 2 0.40824829 3 2.87634 2.98990 2.51644 2.32738 0.925 1.472
5 5 0.001 500000 4.99873 3.20452 2.28036 2.28036 1.000 1.000
5 5 0.25 8 5.42717 3.44951 2.62217 2.62208 1.000 1.150
5 5 0.40824829 3 6.53625 4.49232 3.81179 3.51314 0.922 1.541
10 5 0.001 500000 9.99746 4.58094 2.25832 2.25833 1.000 1.000
10 5 0.25 8 10.47021 4.68864 2.64291 2.63296 0.996 1.166
10 5 0.40824829 3 11.61824 5.53776 4.08220 3.48161 0.853 1.542
10 10 0.001 500000 9.99746 4.53088 3.17806 3.17806 1.000 1.000
10 10 0.25 8 10.37782 4.69332 3.67337 3.64109 0.991 1.146
10 10 0.40824829 3 11.91221 5.81006 5.40928 4.72917 0.874 1.488

𝜈 𝐸 𝜒!(𝑑") 𝜎#!
									𝜎$"#$% = 
𝜎%&'()&!*+.++-) 𝜎$'() 𝜎$'() /𝜎$"#$%

𝜎*!"#
𝜎*!"# +$%&,+'(,-.--/

Table 3: Table showing how the expectation of the 𝜒2, the standard deviation of the 𝜒2, the standard deviation
of the simple mean, the standard deviation of the fitted mean behave as function of 𝑟 = 𝑟𝐷𝑖𝑠𝑡 = 𝑟𝜒2 , the
number of observables, N and the number of correlated systematic errors, M.

𝜎𝐹𝐼𝑇 , if 𝑟𝐷𝑖𝑠𝑡 = 𝑟𝜒2? We show the results of this in Table 2 again with 𝜎𝑖 = 𝜎𝑢𝑖 = 1. As can be
seen from the table, we have very similar behaviour to that in Table 1, apart from the fact that as N
increases the standard deviation of the fitted mean, 𝜎𝐹𝐼𝑇 , initially starts to increase more slowly as
a function of 𝑟 , compared to the standard deviation of the simple mean.

4. Expectation and Variance of 𝜒2 as a Function of 𝑟 for the Case of Statistical and
Correlated Systematic Errors
Let’s now consider the case of only statistical and correlated systematic errors. This is, let’s

consider the case of N observables each with a Gaussian statistical and M t-distributed correlated
systematic errors : 𝑦𝑖 = 𝑑𝑖 + 𝜎𝑖𝑧𝑖 +

∑𝑀
𝑗=1 𝛽𝑖 𝑗 𝑡

′
𝑗
, where 𝑧𝑖 ∼ 𝑁 (0, 1), and 𝑡′

𝑗
∼ 𝑡 (0, 𝜈 = 1/2𝑟2

𝐷𝑖𝑠𝑡
).

In the case where 𝑟 = 𝑟𝐷𝑖𝑠𝑡 = 𝑟𝜒2 , and 𝜎𝑖 = 𝛽𝑖 𝑗 = 1, we obtain the data shown in Table 4.
This figure shows how the expectation of the 𝜒2, 𝐸 [𝜒2], the standard deviation of the 𝜒2, 𝜎𝜒2 ,
the standard deviation of the simple mean, 𝜎𝜑𝑀𝐸𝐴𝑁

, and the standard deviation of the fitted mean,
𝜎𝜑𝐹𝐼𝑇

, behave as function of 𝑟 = 𝑟𝐷𝑖𝑠𝑡 = 𝑟𝜒2 , the number of observables, N, and the number of
correlated systematic errors, M. The behaviour is very similar to what we saw in Section 3 for the
case of uncorrelated errors, in that the expectation and variance increase as a function of 𝑟 , the
standard deviation of the simple mean grows more quickly than the standard deviation of the fitted

4
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mean as r increases. The ratio in the last column of Figure 4, increases to about 1.5 in all cases
compared to 1.4 in the uncorrelated systematic error case.

5. ATLAS W,Z Data analysis [3]
This very precise data gives a strong constraint on the strange quark. However, the fit quality

using the MSHT20 (NNLO) PDF set is relatively poor giving a 𝜒2 ∼ 120 . This data set consists
of 61 data points, each with 1 statistical error, 1 uncorrelated systematic error, and 131 correlated
systematic errors. In Figure 3 we show how the expectation of the 𝜒2, calculated in the Gaussian
limit (i.e. a 𝑟 → 0), varies as a function of the underlying distributional 𝑟 , i.e 𝑟𝐷𝑖𝑠𝑡 . As can be seen,
the 𝜒2 starts at 61, as expected, and increases as we increase the underlying distributional r in the
simulation. It can also be seen from this Figure that 𝐸 [𝜒2] reaches 120 point when the underlying
distribution has a 𝑟 ≈ 0.4.

Using the experimental data, we obtain the graph shown in Figure 4 when we calculate the 𝜒2

using equation 5, where we have optimized with respect to 𝑟𝑢𝑖 and 𝑟 ′
𝑗
, as a function of 𝑟𝜒2 . Once

we include for this decrease in 𝜒2 with increasing 𝑟 shown in Figure 4, we can infer that some of
the inflated 𝜒2 for this data set is due to the error on errors.
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Figure 3: Graph shows the Expectation of 𝐸 [𝜒2],
calculated using 𝑟 = 0.001, as a function of relative
error, 𝑟𝐷𝑖𝑠𝑡 of the simulated underlying systematic
errors.
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Figure 4: Graph shows the 𝜒2 as a function of
relative error, 𝑟𝜒2 , at which the 𝜒2 is calculated

6. ATLAS 7 TeV Inclusive Jet Distributions Analysis [4]
This ATLAS data, combined with the availability of NNLO corrections provides constraints on

the Gluon PDF at high x. The data set consists of 140 data points, each with 1 correlated systematic
error and 70 correlated systematic errors. Using the MSHT20 NNLO PDF set, the fit quality to this
data set is relatively poor with a 𝜒2 ≈ 280. In order to improve the fit quality MSHT20 [2] use a
de-correlation process which reduces the 𝜒2 ≈ 243.

In Figure 5, we show a similar graph to that in Figure 3 for this data set. The graph shows the
expectation of 𝜒2, 𝐸 [𝜒2], calculated with 𝑟𝜒2 = 0.00001, where the systematic errors are sampled
from t-distribution with d.o.f 1/2𝑟2

𝐷𝑖𝑠𝑡
. As can be seen 𝐸 [𝜒2] crosses the 𝜒2 = 243 line at an 𝑟𝐷𝑖𝑠𝑡

of about 0.45. In Figure 6, we show how the 𝜒2 varies as a function of 𝑟𝜒2 for the cases of just

5
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3000 Paths Model 1 10000

number iter 10 10
r_chi^2 = 0.00001

140 r_Dist E[    ]      Decorrelation pi/2     Decorrelation pi/4-68% +68% sigma_chi^2
r_dist 0.001 0.001 140.350241 243.43 199.18 131.950818 148.75          16.7988463
E[chi^2] 140.3502414 0.1 140.716175 243.43 199.18 132.157417 149.27          17.1175156
standard Dev chi^2 16.79884629 0.2 144.06878 243.43 199.18 135.246999 152.89          17.643562
r_dist 0.1 0.3 152.386518 243.43 199.18 142.025764 162.75          20.7215065
E[chi^2] 140.7161753 0.35 160.72268 243.43 199.18 141.309558 180.14          38.8262435
standard Dev chi^2 17.11751562 0.4 177.068829 243.43 199.18 140.324765 213.81          73.4881291
r_dist 0.2 0.45 216.464133 243.43 199.18 89.002462 343.93          254.923343
E[chi^2] 144.0687797 0.5 410.379737 243.43 199.18 -842.17803 1,662.94      2505.11553
standard Dev chi^2 17.64356197
r_dist 0.3 0.3
E[chi^2] 152.3865175 152.3020978
standard Dev chi^2 20.72150646 21.87822933
r_dist 0.35 0.35
E[chi^2] 160.7226797 160.4406389
standard Dev chi^2 38.82624347 27.86432278
r_dist 0.4 0.4
E[chi^2] 177.0688292 178.8232064
standard Dev chi^2 73.48812913 192.5493717
r_dist 0.45 0.45
E[chi^2] 216.4641333 222.0750773
standard Dev chi^2 254.9233426 520.3960882
r_dist 0.5 0.5
E[chi^2] 410.3797368 377.8792892
standard Dev chi^2 2505.115531 2036.077564
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Figure 5: Graph shows 𝐸 [𝜒2], calculated with
𝑟𝜒2 = 0.00001, where systematic errors are sam-
pled from t-distribution with d.o.f 1/2𝑟2

𝐷𝑖𝑠𝑡
. Line

at 243.43 is 𝜒2 calculated using 𝑟𝜒2 = 0.0001 for
de-correlated data.
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Figure 6: Graph shows the 𝜒2 or 𝐸 [𝜒2] as
a function of relative error, 𝑟𝜒2 . Raw data
refers to just the raw data provided by ATLAS.
De-correlation refers to 𝜒2 calculated with 3
of the "two point" systematic uncertainties de-
correlated. Other lines show the 𝐸 [𝜒2] using
pseudo data produced using various 𝑟𝐷𝑖𝑠𝑡 .

the raw data, and for the case of the MSHT20 de-correlation procedure (labelled "Decorrelation").
Also in Figure 6, we show how the expectation of 𝜒2, 𝐸 [𝜒2], behaves as a function of 𝑟𝜒2 for
different values of 𝑟𝐷𝑖𝑠𝑡 . Suggestive as it is, making the assertion that this data has an 𝑟 ≈ 0.45,
would neglect not only the decreasing behaviour of 𝜒2 as a function of 𝑟 , but also the theoretical
uncertainties and the choice of de-correlation process used.

7. Conclusions
In this document we have shown how we can incorporate Errors on Errors into the calculation

of a 𝜒2. We have also shown that the Expected 𝜒2 and Variance of 𝜒2 increase as the relative errors
of the systematic errors increase. We have noted that for both data sets analysed 𝑟 ≈ 0.4. We have
also observed that the ratio of the expected standard deviation of the mean, using 𝑟𝜒2 = 0.001 and
𝑟𝐷𝑖𝑠𝑡 = 0.4, to that calculated using 𝑟𝜒2 = 0.001 and 𝑟𝐷𝑖𝑠𝑡 = 0.001 is approximately 1.2−1.5. This
is suggestive of using a Tolerance, 𝑇2, in the region of 1.5 − 2 in these test cases.
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