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Experimental errors are now incredibly precise, and are often dominated by the systematic uncer-
tainties. Therefore the errors obtained in the Parton Distribution Functions that are extracted from
this data will also be dominated by these experimental systematic errors, as well as the systematic
errors embedded in the theoretical calculations. However, as is well known, there are often signif-
icant uncertainties in these systematic errors, and so to determine precisely the errors in the Parton
Distribution Functions, we need to be thoughtful about the uncertainties in the errors themselves.
In this paper, we discuss an approach where these "errors on errors" can be incorporated into a
x? calculation, and investigate how such a model behaves and what it tells us about the resulting
errors. Also we look at two data sets, ATLAS W,Z Data [3] and the ATLAS 7 TeV Inclusive Jet
Distribution Data [4] and investigate the information that this model implies about these two data
sets.
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1. Introduction

Experimental errors are becoming extremely precise and are now dominated by systematic
uncertainties. However, there are often significant errors in the determination of these systematic
errors. Therefore, itis becoming increasingly important that these "errors on errors" are incorporated
into our Parton Distribution framework such that the extracted errors incorporate this extra layer of
uncertainty. In this short document, we demonstrate how it is possible to achieve this.

2. Derivation of the Model

Consider a set of data, y. The probability of y can be written P(y|u, 8), where u are parameters
of interest and 6 are nuisance parameters that are required for the correctness of the model. If
we let 6 = (0, ...,0n) be independent Gaussian distributed values u = (u1, ..., uy), with standard
deviations oy, = (07, ..., Oy ), then the Likelihood function can be written as:

L(u,6) = P(y,ulu,60) = P(y|u, 6)P(ul6)

N
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However, 0, maybe uncertain. One way to incorporate this uncertainty in o, has been proposed
in [1]. In this proposal we model the estimated variances, v;, of (731,, as Gamma distributed, which
allows us to rewrite equation 1 as:
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where @; = 1/ (4rl.2), Bi=1/ (4rl.20',fi) and r; is defined as the relative uncertainty in the estimate of
the systematic error. The parameters r; can therefore be referred to as the "error on errors". This
model can be reinterpreted as a Student’s t-distribution, once we make a small change of variables:
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where t; = ”’;\FH' and v; = # Therefore, we can treat our nuisance parameters as t-distributed!

Now we want to extend this model to incorporate correlated systematic errors. So consider:
M
yi =di +errors = d; + 0y2; + Oy;ty, + Z,Bijt;. 4)
j=1
where for each observable y; we have one statistical error o, with a z; that is a Normally distributed
fluctuating variable, one uncorrelated systematic error o, with at,, thatis a t-distributed fluctuating
variable with dof of v = 1/ Zri/z, and M correlated systematic errors, §;;, each with a fluctuation t_;.
that are t-distributed with degree of freedom of v = 1/ 2r)2(2.
If we treat all the t-distributions as independent ', then the Log-likelihood function, once we
have maximized with respect to z;, can be written up to some constants as:

INote that if we treated the t-distributions as a Multi-variate t-distribution with zero correlation between all the tu
and the ¢/, then the likelihood function would be different.
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where we can define this to be a y? once we have minimized simultaneously with respect to both
ty, and t';.

3. The case of Statistical and uncorrelated systematic errors only

Let’s initially consider the case of only statistical and uncorrelated systematic errors. In this
case we can write y; = d; + 0,2; + 0y, ty;, where z; ~ N(0, 1), 1, ~1(0,v = 1/2r2Dist). That is, we
are drawing our y from a distribution where the statistical errors are normally distributed and the
uncorrelated systematic errors are t-distributed.

Using numerical integration we can investigate the expectation of y2, E[x?], and the Variance
of %, Var[x?]. In Figure 1 we plot the E[x?] as a function of rp;s, where the E[x?] has been
calculated at various different r)z(. As can be seen, the expectation is a growing function of rp;g;,
evenif r,2 = rpis . In Figure 2 we plot Var|[ x?]/2 as a function of rp;,,. This plot shows that the

Var[x?]/2 is a similarly increasing function of rp;s;, even as r,2 1s increased.
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Figure 1: Graph of E[y?] as a Function of rp;s; for Figure 2: Graph of Var [ y?]/2 as a Function of 7p;s;
4 different re (o =0y = 1) for 4 different 2 (oi=o0y=1)

In the case of only normally distributed statistical and t-distributed uncorrelated systematic
errors, the standard deviation of the simple mean, yeqn = Zf.i | Yi/N, is given by:

VEN 02402 v/(v=2) SN ELC (e — O)1(07 +03)
N - N

In Table 1, we show how oas¢q, behaves as a function of r and N (with oy = 0, = 1). As can be

(6)

OMean ~

seen for all the cases of N, the ratio of 0, ,,-0.408/ Trp,;4,=0.0001 = 1.4.
The next question we want to ask is what happens if we minimize the y?, calculated with

2 = I'Dists with respect to our mean? That is, what is the standard deviation of the fitted mean,
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I'Dist N=2 | N=10 | N=500 | Ratio rpist | N=2 | N=10 | N=500 | Ratio
0.001 | 0.995 | 0.449 | 0.064 | 1.000 0.001 | 0.995 | 0.449 | 0.064 | 1.000
0.100 | 0.991 | 0.452 | 0.064 | 1.005 0.100 | 0.991 | 0.452 | 0.064 | 1.004
0.250 | 1.092 | 0.481 | 0.069 | 1.077 0.250 | 1.092 | 0.479 | 0.068 | 1.069
0.300 | 1.122 | 0.504 | 0.071 1.108 0.300 | 1.122 | 0.493 | 0.069 | 1.087
0.408 | 1.417 | 0.637 | 0.089 | 1.393 0.408 | 1.417 | 0.547 | 0.076 | 1.393
Table 1: Table showing oeqn as a function of Table 2: Table showing op/7 as a function of
r and N (with o; = o, = 1). The last col- r and N (with oy = 0,, = 1). The last column
umn given the Ratio — TrDist for the case of given the Ratio IEIT for the case of
(rpisr=0.001) T(rpise=r,2=0-001)
N=500. N=500.
Opmean = oriT
N M r v E[x?(d)] Oy? UFIT(rxz =0.001) O9pm Oprir ! Tpmpan % prir(rpst=r,2=0.001)
2 2 0.001 500000 1.99949 2.05734 1.58114 1.58114 1.000 1.000
2 2 0.25 8 2.28779 2.31064 1.78103 1.78970 1.005 1.132
2 2 0.40824829 3 2.87634 2.98990 2.51644 2.32738 0.925 1.472
5 5 0.001 500000 4.99873 3.20452 2.28036 2.28036 1.000 1.000
5 5 0.25 8 5.42717 3.44951 2.62217 2.62208 1.000 1.150
5 5 0.40824829 3 6.53625 4.49232 3.81179 3.51314 0.922 1.541
10 5 0.001 500000 9.99746 4.58094 2.25832 2.25833 1.000 1.000
10 5 0.25 8 10.47021 4.68864 2.64291 2.63296 0.996 1.166
10 5 0.40824829 3 11.61824 5.53776 4.08220 3.48161 0.853 1.542
10 10 0.001 500000 9.99746 4.53088 3.17806 3.17806 1.000 1.000
10 10 0.25 8 10.37782 4.69332 3.67337 3.64109 0.991 1.146
10 10 0.40824829 3 11.91221 5.81006 5.40928 4.72917 0.874 1.488

Table 3: Table showing how the expectation of the y2, the standard deviation of the y?, the standard deviation
of the simple mean, the standard deviation of the fitted mean behave as function of r = rp;s = s the
number of observables, N and the number of correlated systematic errors, M.

orrT, if rpise = 2?7 We show the results of this in Table 2 again with o; = 0,, = 1. As can be
seen from the table, we have very similar behaviour to that in Table 1, apart from the fact that as N
increases the standard deviation of the fitted mean, o7, initially starts to increase more slowly as
a function of r, compared to the standard deviation of the simple mean.

4. Expectation and Variance of y> as a Function of r for the Case of Statistical and
Correlated Systematic Errors

Let’s now consider the case of only statistical and correlated systematic errors. This is, let’s
consider the case of N observables each with a Gaussian statistical and M t-distributed correlated
systematic errors : y; = d; + 0;z; + Z_i]vil /S'ijt;., where z; ~ N(0, 1), and t;. ~t(0,v = I/Zr%)m).

In the case where r = rp;s; = s and o; = B;; = 1, we obtain the data shown in Table 4.
This figure shows how the expectation of the y2, E[y?], the standard deviation of the y?, T2
the standard deviation of the simple mean, o, ., > and the standard deviation of the fitted mean,
O rir» behave as function of r = rp;g = T the number of observables, N, and the number of
correlated systematic errors, M. The behaviour is very similar to what we saw in Section 3 for the
case of uncorrelated errors, in that the expectation and variance increase as a function of r, the

standard deviation of the simple mean grows more quickly than the standard deviation of the fitted
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mean as r increases. The ratio in the last column of Figure 4, increases to about 1.5 in all cases
compared to 1.4 in the uncorrelated systematic error case.

5. ATLAS W,Z Data analysis [3]

This very precise data gives a strong constraint on the strange quark. However, the fit quality
using the MSHT20 (NNLO) PDF set is relatively poor giving a x> ~ 120 . This data set consists
of 61 data points, each with 1 statistical error, 1 uncorrelated systematic error, and 131 correlated
systematic errors. In Figure 3 we show how the expectation of the y?2, calculated in the Gaussian
limit (i.e. ar — 0), varies as a function of the underlying distributional r, i.e rp;s;. As can be seen,
the y? starts at 61, as expected, and increases as we increase the underlying distributional r in the
simulation. It can also be seen from this Figure that E [ y?] reaches 120 point when the underlying
distribution has a r = 0.4.

Using the experimental data, we obtain the graph shown in Figure 4 when we calculate the y?
using equation 5, where we have optimized with respect to r,, and r}, as a function of r,2. Once
we include for this decrease in x> with increasing r shown in Figure 4, we can infer that some of
the inflated y? for this data set is due to the error on errors.
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Figure 3: Graph shows the Expectation of E[x?],  Figure 4: Graph shows the y2 as a function of
calculated using r = 0.001, as a function of relative relative error, 7,2, at which the x? is calculated
error, rp;s, of the simulated underlying systematic

€errors.

6. ATLAS 7 TeV Inclusive Jet Distributions Analysis [4]

This ATLAS data, combined with the availability of NNLO corrections provides constraints on
the Gluon PDF at high x. The data set consists of 140 data points, each with 1 correlated systematic
error and 70 correlated systematic errors. Using the MSHT20 NNLO PDF set, the fit quality to this
data set is relatively poor with a y? ~ 280. In order to improve the fit quality MSHT20 [2] use a
de-correlation process which reduces the y? ~ 243.

In Figure 5, we show a similar graph to that in Figure 3 for this data set. The graph shows the
expectation of y?, E[y?], calculated with r» = 0.00001, where the systematic errors are sampled
from t-distribution with d.o.f 1/ 2r2Di - As can be seen E[ ¥?] crosses the y? = 243 line at an rpg;
of about 0.45. In Figure 6, we show how the y? varies as a function of r,2 for the cases of just



A study of systematic uncertainties within the MSHT PDF Framework Matthew Reader

EPr®] ow?

.
. X
5
0 I
X
. Eom \

10

Thist

—E[y] —x*Decorrelation pi/2 —~RawData —Decorrelation  —1 Dist=0001 —Dist=01 —1Dist=02 —rDist=03 —iDist=04 —Dist045 — Dist=05

Figure 5: Graph shows E [ y?], calculated with Figure 6: Graph shows the y? or E[y?] as
ry> = 0.00001, where systematic errors are sam- a function of relative error, r,». Raw data
pled from t-distribution with d.o.f 1/ 2r2D igp+ LiNE refers to just the raw data provided by ATLAS.
at 243.43 is y* calculated using r > = 0.0001 for De-correlation refers to y? calculated with 3
de-correlated data. of the "two point" systematic uncertainties de-

correlated. Other lines show the E[y?] using
pseudo data produced using various 7 pjg;.

the raw data, and for the case of the MSHT20 de-correlation procedure (labelled "Decorrelation").
Also in Figure 6, we show how the expectation of y?, E[x?], behaves as a function of r for
different values of rp;s. Suggestive as it is, making the assertion that this data has an r ~ 0.45,
would neglect not only the decreasing behaviour of y? as a function of r, but also the theoretical
uncertainties and the choice of de-correlation process used.

7. Conclusions

In this document we have shown how we can incorporate Errors on Errors into the calculation
of a x2. We have also shown that the Expected y? and Variance of y? increase as the relative errors
of the systematic errors increase. We have noted that for both data sets analysed » ~ 0.4. We have
also observed that the ratio of the expected standard deviation of the mean, using r,> = 0.001 and
rpist = 0.4, to that calculated using re = 0.001 and rp;s; = 0.001 is approximately 1.2 — 1.5. This
is suggestive of using a Tolerance, T2, in the region of 1.5 — 2 in these test cases.
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