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Nuclear Parton Distribution Functions (nPDFs) are critical for understanding nuclear structure and
making heavy-ion collision predictions. nPDFs have been determined via ‘global QCD analyses’,
which is a statistical approach based on fitting nPDF-dependent theoretical predictions to the
relevant experimental data. One of the crucial aspects of nPDF determination is uncertainty
estimation. Typically, the Hessian method is used to propagate experimental uncertainties into
predictions for collisions of nuclei. However, due to the nature of nPDF fits (such as limited data
constraints, non-gaussianity, and possible multiple minima), this method does not always provide
reliable results. In this work, we introduce the application of Markov Chain Monte Carlo (MCMC)
methods as a statistically sophisticated alternative for estimating nPDF uncertainties by sampling
directly from the probability distribution of the nPDF parameters.

31st International Workshop on Deep Inelastic Scattering
8–12 April 2024
Maison MINATEC, Grenoble, FRANCE

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

https://orcid.org/0000-0003-0962-631X
https://orcid.org/0000-0002-8570-5506
https://orcid.org/0000-0002-1334-7607
https://orcid.org/0000-0003-1412-447X
https://orcid.org/0000-0002-4090-0084
mailto:nasim.derakhshanian@ifj.edu.pl
https://pos.sissa.it/


P
o
S
(
D
I
S
2
0
2
4
)
0
5
8

Estimating nPDF Uncertainties via MCMC Methods N. Derakhshanian

1. Introduction

While the 𝑄-dependence of parton distribution functions (PDFs) can be calculated using
perturbative quantum chromodynamics, their dependence on the momentum fraction 𝑥 is non-
perturbative and must be extracted using a ‘global QCD analysis’, where PDF-dependent predictions
are fitted from experimental measurements. We similarly employ this approach to extract nuclear
PDFs from experimental data. In both scenarios, global analyses rely on minimizing a statistical
figure-of-merit to optimize the correspondence between theory and experiment. This figure-of-merit
is typically the chi-squared function 𝜒2, calculated for uncorrelated data points using the formula
𝜒2(a) =

∑
𝑖
[𝐷𝑖−𝑇𝑖 (a) ]2

𝜎2
𝑖

, where 𝐷𝑖 represents the observed data points, 𝑇𝑖 are the corresponding

theoretical predictions, and 𝜎2
𝑖
≡ �̂�2

𝑖
+ �̄�2

𝑖
is the sum of the statistical and systematic uncertainties,

and a is the set of parameters that define the functional form of PDFs at the initial scale.
Several collaborations have performed global analyses of nuclear PDFs [1]. This proceedings paper
presents the preliminary results of our study using the nCTEQ global analysis framework [2]. In
this framework, assuming isospin symmetry, the PDF of the nucleus 𝑓

(𝐴,𝑍 )
𝑖

is parameterized in
terms of bound proton (neutron) PDF 𝑓

𝑝 (𝑛)/𝐴
𝑖

, as

𝑓
(𝐴,𝑍 )
𝑖

(𝑥, 𝑄) = 𝑍

𝐴
𝑓
𝑝/𝐴
𝑖

(𝑥, 𝑄) + 𝐴 − 𝑍

𝐴
𝑓
𝑛/𝐴
𝑖

(𝑥, 𝑄). (1)

The CJ15 proton baseline [3] is the functional form that we use to parameterize the bound proton
at the initial scale 𝑄0 = 1.3 GeV. This parameterization for 𝑢𝑣 , 𝑑 + �̄�, 𝑔, 𝑠 + 𝑠 is as follows:

𝑥 𝑓 (𝑥, 𝑄0) = 𝑐0𝑥
𝑐1 (1 − 𝑥)𝑐2

(
1 + 𝑐3

√
𝑥 + 𝑐4𝑥

)
, (2)

and 𝑑𝑣 is parameterized through

𝑥𝑑𝑣 (𝑥, 𝑄0) = 𝑐0
[
𝑥𝑐1 (1 − 𝑥)𝑐2

(
1 + 𝑐3

√
𝑥 + 𝑐4𝑥

)
+ 𝑐5𝑥

𝑐6𝑥𝑢𝑣 (𝑥, 𝑄0)
]
. (3)

In this framework, the nuclear 𝐴-dependence is represented by 𝑐 𝑗 (𝐴) coefficients, which are defined
as 𝑐 𝑗 (𝐴) = 𝑝 𝑗 + 𝑎 𝑗 ln 𝐴 + 𝑏 𝑗 ln2 𝐴. In our study, we focus on fitting 10 parameters 𝑎 𝑗 , specifically
𝑎1, 𝑎2, and 𝑎3 for the 𝑢-valence and 𝑑-valence, and 𝑎1 and 𝑎2 for both 𝑑+ �̄� and gluons distributions.
We keep 𝑝 𝑗 parameters fixed based on the CJ15 proton PDF fit.
To estimate these nPDF parameters, we employ Bayesian inference, a statistical method that updates
our beliefs or knowledge about the parameters based on observed data. Using Bayes theorem, the
posterior distribution 𝑃(a|𝐷), the probability of having a set of parameters a given the observed
data 𝐷, is formulated in terms of the likelihood of the data given the parameters and the prior
distribution of the parameters 𝑃(a) as

𝑃(a|𝐷) = 1
𝑁
𝑃(a) exp

(
− 1

2
𝜒2(𝐷,𝑇 (a))

)
. (4)

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from probabil-
ity distributions in order to construct Markov chains in such a way that their stationary distribution
converges to the target probability distribution. Although directly calculating the posterior is gen-
erally difficult and often impractical, especially in complex or high-dimensional problems, MCMC
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enables the estimation of posterior probability densities for multi-dimensional models and provides
reliable error estimatations. We obtain a distribution of all the probable values for each parameter
by generating a Markov chain from the posterior distribution via a MCMC algorithm. It allows us
to calculate statistical measures such as the mean and variance. However, in this context, we must
carefully consider error estimation, as the samples can be highly correlated due to the Markovian
property. The autocorrelation function measures how the correlation between any two samples
changes with their time separation or lag. This correlation reduces the effective number of inde-
pendent samples and complicates the error estimation. In the ideal scenario where samples are
independent, the error estimation can be done straightforwardly by using the Monte Carlo standard
error (MCSE), which is defined as the standard deviation of the chains divided by their effective
sample size.

2. Motivation

Uncertainty estimation methods in nuclear PDFs are critical, as they play a significant role in
understanding the precision and reliability of heavy-ion collision predictions. The Hessian method
is most commonly used for estimating nPDF uncertainties [1]. It relies on 𝜒2 function minimization
to find the best fit and assumes a quadratic approximation of the 𝜒2 distribution near this minimum to
explore uncertainties. However, this method has certain shortcomings, such as difficulty with non-
Gaussian error distributions, the potential for not identifying the global minimum, and the impact
of the choice of the 𝜒2 tolerance on the reliability of the uncertainty estimations. Particularly, the
lack of sufficient data to constrain all nPDF flavors makes these issues more serious.
To address these limitations, we apply MCMC methods as a statistically sophisticated alternative
for estimating nPDF uncertainties by sampling directly from the probability distribution of the
parameters. MCMC has already been used in a simplified proton PDF fit [5], and we are also
working towards a full scale proton fit using MCMC [6]. In our current study, we extend the
application of MCMC to include a more realistic dataset, resulting in a comprehensive uncertainty
estimation for nuclear PDFs and comparing these results with the standard Hessian approach.

3. Methodology

We aim to find a set of nPDF parameters that maximizes the posterior probability distribution
given the experimental data. First, we need to construct the posterior probability distribution
according to Eq. (4). The posterior is defined in terms of the 𝜒2 likelihood and prior, where
the 𝜒2 function accounts for the correlated and normalization uncertainties of the data sets and
includes the theoretical predictions calculated in dependence of the PDF parameters. Additionally,
we need to set the prior distribution. In our setup, we don’t use any priors (i.e., we don’t consider
any initial information about the parameters and formally use a constant prior), except for the
prior for parameter 𝑎3 of the up-valence distribution. If we run a chain without this prior, the
parameter remains unconstrained due to the lack of constraining data and the specific form of the
parametrization. To address this issue, we apply a uniform prior with the bounds [−300, 300]
specifically for the parameter 𝑎3. The prior is constant within this interval and zero outside of it.
To ensure that the 𝜒2 function is independent of the prior choice, we perform a 𝜒2-scan for this
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parameter and observe that the 𝜒2 value remains constant at the prior boundaries. The next step
is running a MCMC algorithm to generate Markov chains and draw samples from the posterior
distribution. For this purpose, We employ an adaptive Metropolis-Hastings (aMH) algorithm [7].
This algorithm starts with a random-walk phase where the proposal distribution is a multivariate
Gaussian function with a fixed covariance matrix. After this initial phase, it switches to a self-
learning phase where the covariance matrix of the Gaussian function is no longer fixed but is
dynamically updated based on the collected samples.
We can summarize our approach in three steps:

• Generation of MCMC Chains: We generate multiple MCMC chains, each initialized with
random values from Hessian fit results and using unique random seeds to ensure independence.
We remove the initial segment known as the burn-in or thermalization phase of each chain to
guarantee that subsequent samples reflect the equilibrium state of the chain.

• Sample Optimization: To address the issue of autocorrelation within each chain and improve
error estimation, we apply a thinning method. In this procedure, we selectively keep only every
𝜂-th sample of the chain and discard the rest. This process significantly reduces the number
of correlated samples and allows to obtained samples that are approximately uncorrelated
(assuming the initial chains are long enough). Moreover, it is critical for creating a LHAPDF
set of PDF grids [8], a standard PDF distribution format, since the number of chain units
must be limited to make it practical and user-friendly.

• Analysis and Output: The uncorrelated samples from all chains are combined to form a
comprehensive dataset, from which we estimate the nPDF parameters and their uncertainties.
Given that these samples are effectively uncorrelated, we are able to employ standard Monte
Carlo error estimation techniques, or alternatively, use more advanced methods. We then
create a nPDF set in the standard LHAPDF format corresponding to each individual sample,
facilitating further use and analysis by the research community.

4. Results

As a preliminary study, we generate Markov chains for 10 lead (Pb208) PDF parameters (3 for
𝑢-valence, 3 for 𝑑-valence, 2 for light sea quarks, and 2 for gluons), as displayed in Fig. 1. Since
MCMC method is inherently time-consuming, we have to optimize its computational efficiency.
To speed up theory predictions and enhance efficiency, we restrict our datasets to 𝑊/𝑍 boson
production in proton-lead collisions at the LHC, charged current (CC) neutrino DIS on lead from
the CHORUS experiment, and heavy quark production in proton-lead collisions at LHC. After
performing kinematic cuts (for CC DIS: 𝑊2 > 12.25GeV2 and 𝑄2 > 4.0GeV2 ), we have 1448 data
points to perform the fit for lead PDF extraction. All theoretical predictions are performed at next-
to-leading order (NLO) in perturbative QCD and we consider sACOT scheme for handling heavy
quarks [10]. In terms of our MCMC setup, we use the adaptive Metropolis-Hastings algorithm to
collect approximately 800,000 points, after discarding the initial thermalization phase. Regarding
computational cost, it takes one day for a single CPU to generate 20,000 points. Then, to reduce the
autocorrelation of the chain, we apply a thinning process, selecting every 4000th sample (𝜂=4000).
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After ensuring that the thinned samples are uncorrelated, we construct the nuclear PDF for each
sample, enabling us to estimate uncertainties directly at the nPDF level. This process provides a
comprehensive evaluation of the confidence intervals for the distribution of nPDFs derived from the
Markov chain. We use the percentile method to estimate the uncertainties to obtain 1𝜎 confidence
interval (CI), a technique also employed in the nNNPDF3.0 fit [9]. In this method, after arranging the
nPDFs in ascending order, we determine the confidence interval directly by selecting the percentiles
corresponding to the desired confidence level; in our case, the lower and upper bounds are 16th and
84th percentiles, and the central value is is identified as the 50th percentile.

Figure 1: The time series of parameter values for the (Pb208) PDF after removing the thermalization phase.
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Figure 2: 𝑢, �̄�, 𝑑, and 𝑑 PDFs in Lead resulting from the Hessian (red) and MCMC (blue) methods.
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5. Conclusion

In conclusion, despite the MCMC methods challenges, particularly the computational demands,
this approach could provide a robust and statistically rigorous framework for extracting nuclear
PDFs, especially effective in addressing non-Gaussian features. Our preliminary results for the
lead PDF are promising. We are currently generating additional Markov chains to collect larger
statistics and improve the accuracy of our results. Furthermore, we aim to extend this approach for
fits with multiple nuclei and explore additional statistical methods to refine uncertainty estimation
in Markov chains.
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