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1. Introduction

The production of a Higgs boson (𝐻) in association with a top-quark pair (𝑡𝑡) at LHC is exper-
imentally interesting because it provides direct access to the top–Higgs Yukawa coupling. The
first observation of such events have been reported on by both ATLAS and CMS collaborations in
2018 [1, 2], with earlier evidence reported in [3–5] and more analyses being done since then [6–10].
The latest results are based on the data from 2015–2018 (i.e. LHC Run II); here are some of them:

𝜎𝑡𝑡𝐻 ,Experiment/𝜎𝑡𝑡𝐻 ,Standard Model L 𝐻 decay channels

ATLAS ’18 [1] 1.32 +0.18
−0.18(stat) +0.21

−0.19(syst) 79.8 fb−1 𝛾𝛾, 𝑏𝑏, 𝑊𝑊 , 𝑍𝑍

ATLAS ’20 [6] 1.43 +0.33
−0.31(stat) +0.21

−0.15(syst) 139 fb−1 𝛾𝛾

CMS ’20 [8] 1.38 +0.29
−0.27(stat) +0.21

−0.11(syst) 137 fb−1 𝛾𝛾

CMS ’20 [9] 0.92 +0.19
−0.19(stat) +0.17

−0.13(syst) 137 fb−1 𝑊𝑊 , 𝜏𝜏, 𝑍𝑍

These results are not very precise, but already the reported statistical errors are of the same order
of magnitude as the theoretical ones. The former ones are largely determined by the available data
volume (i.e. the integrated luminosity L), and with the inclusion of the LHC Run III data that is
expected to double L, and further inclusion of the LHC-HL data (increasing L to 3000 fb−1), the
statistical error is expected to go down to around 2% [11–13]. The theoretical error, on the other
hand, is dominated by uncertainties related to the truncation of the perturbative expansion, with the
state of the art being next-to-leading order (NLO) calculations. To improve the theoretical error, a
NNLO calculation for the 𝑝𝑝 → 𝑡𝑡𝐻 production is needed.

Multiple steps towards a NNLO calculation have been made in the last few years [14–18], but
there remains a big missing part: the two-loop virtual amplitudes for 𝑞𝑞 → 𝑡𝑡𝐻 and 𝑔𝑔 → 𝑡𝑡𝐻

with full top-quark mass and Higgs mass dependence. Because the needed quantity is a two-loop
five-point amplitude with two masses, for a total of 7 scales, the calculation of it using conventional
methods is very resource-intensive—it currently lies at the forefront of what is practically achievable.

In this paper we would like to report on the successful completion of a proof-of-a-concept
calculation of the part of the two-loop 𝑞𝑞 → 𝑡𝑡𝐻 amplitude proportional to the number of light quark
flavours and/or heavy quark flavours (the “𝑁𝑓 part”), with full top- and Higgs mass dependence [19].
It is our belief that the method used in this calculation can be extended to the calculation of the
remaining non-𝑁𝑓 parts of 𝑞𝑞 → 𝑡𝑡𝐻, as well as to 𝑔𝑔 → 𝑡𝑡𝐻.

2. Calculation method

The object of our interest is the scattering amplitude of the process

𝑞(𝑝𝑞) + 𝑞(𝑝𝑞̄) → 𝑡 (𝑝𝑡 ) + 𝑡 (𝑝𝑡 ) + 𝐻 (𝑝𝐻 ), (1)

calculated in QCD with an additional scalar 𝐻 of mass 𝑚𝐻 , 𝑛𝑙 light (massless) quarks, and 𝑛ℎ heavy
(massive) quarks of mass 𝑚𝑡 . This process has a 5-dimensional phase-space. To parameterize it,
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Figure 1: The phase-space parameters. The angles 𝜃𝑡 and 𝜑𝑡 are local to the 𝑡𝑡 rest frame, while 𝜃𝐻 is local
to the 𝑡𝑡𝐻 rest frame.

we remap the invariants

𝑠 =
(
𝑝𝑞 + 𝑝𝑞̄

)2 ∈
[
(2𝑚𝑡 + 𝑚𝐻 )2 ; ∞

]
, (2)

𝑠𝑡𝑡 =
(
𝑝𝑡 + 𝑝𝑡

)2 ∈
[
(2𝑚𝑡 )2 ;

(√
𝑠 − 𝑚𝐻

)2 − (2𝑚𝑡 )2 ] , (3)

into a hypercube by introducing

𝛽2 ≡ 𝑠 − 𝑠𝑚𝑖𝑛

𝑠
∈ [0; 1], (4)

frac𝑠𝑡𝑡 ≡
𝑠𝑡𝑡 − 𝑠𝑡𝑡 ,𝑚𝑖𝑛

𝑠𝑡𝑡 ,𝑚𝑎𝑥 − 𝑠𝑡𝑡 ,𝑚𝑖𝑛

∈ [0; 1], (5)

and the angles 𝜃𝐻 ∈ [0; 𝜋], 𝜃𝑡 ∈ [0; 𝜋], 𝜑𝑡 ∈ [0; 2𝜋] as in Figure 1.
We consider the amplitude projected onto Born and expanded in the strong coupling 𝛼𝑠,

〈Amplitudetree-level | Amplitude〉 ≡ A +
(𝛼𝑠

2𝜋

)
B +

(𝛼𝑠

2𝜋

)2
C, (6)

where C is our quantity of interest: we shall calculate the 𝑁𝑓 part of it, i.e. the part proportional to
either 𝑛𝑙 or 𝑛ℎ. To do that:

1. We start by generating all diagrams for 𝑞𝑞 → 𝑡𝑡𝐻 at two loops using Qgraf [20]. There is a
total of 702 of them, but only 249 contribute to the 𝑁𝑓 part.

2. We insert the Feynman rules using Alibrary [21], sum over the spinor and color tensors
with Form [22] and Color.h [23]. We get around 90000 scalar integrals contributing to
15 symbolic structures (i.e. gauge-invariant color and flavour structures): {𝑛ℎ |𝑛𝑙}𝐶𝐴𝐶𝐹𝑁𝑐 ,
{𝑛ℎ |𝑛𝑙}𝐶2

𝐹
𝑁𝑐 , {𝑛ℎ |𝑛𝑙} 𝑑33, {𝑛ℎ |𝑛𝑙}2 𝐶𝐹𝑁𝑐; 𝐶2

𝐴
𝐶𝐹𝑁𝑐 , 𝐶𝐴𝐶

2
𝐹
𝑁𝑐 , 𝐶3

𝐹
𝑁𝑐 , 𝐶𝐴𝑑33, 𝐶𝐹𝑑33, 𝑑44.

Only the first 9 of these are proportional to 𝑛𝑙 or 𝑛ℎ; for them only 20000 integrals need to be
considered.

3. We resolve integral symmetries using Feynson [24, Chapter 4] and sort integrals into families
(topologies). We find 89 families, with only 44 contributing to the 𝑁𝑓 part, and out of them
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only 28 are unique up to permutation of external legs. Here are some of the more complicated
integral families:

. . .

(The thick red lines correspond to massive top quarks, dashed blue legs to the radiated Higgs).

4. We use Kira [25, 26] to figure out the master integral count in each sector. There are 3005
master integrals in total, with only 831 relevant to the 𝑁𝑓 part. We see up to 13 master
integrals per sector, but only up to 8 in the 𝑁𝑓 part.

5. We optimize the selection of master integrals by considering integrals with raised denominator
powers and shifted dimensions, as will be described in Section 2.1.

6. With the chosen master integrals we generate the needed IBP relations with Kira and
dimensional recurrence relations with Alibrary, and precompute the IBP solution using
Rational Tracer (Ratracer) [27] by constructing a trace of the solution. Note that we do not
try to solve the full set of equations symbolically, as that is prohibitively complex.

7. We generate and precompile a pySecDec integration library for the amplitudes; we define
each symbolic structure as a separate weighted sum of the master integrals. Because the
weights in these sums are to be determined via the solution of the IBP relations, at this stage
we only supply pySecDec with the information about the poles of these coefficient; the actual
values will be substituted at a later stage.

8. For each phase-space point of interest we:

(a) Solve the combined set of IBP and dimensional recurrence relations using the precom-
puted Ratracer trace. This takes around 2 CPU-minutes.

(b) Plug in the IBP coefficients into the pySecDec integration library, and run it (on a
GPU) to get the raw amplitude values. This takes from 5 minutes in the bulk of the
phase-space to arbitrary large time near the boundaries (e.g. in the high-energy region).

(c) Combine the 2-loop amplitude with the 1-loop and the tree-level ones to perform
renormalization and infrared pole subtraction as described in [28, 29].

(d) Save the obtained result.

There are three key elements here: choosing the master integrals, solving the IBP relations with
Ratracer, and evaluating the integrals with pySecDec. Let us describe all three in more detail.
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Integral Orders in 𝜀 Time Integral Orders in 𝜀 Time

𝑚𝑊
𝑚𝑍

𝜀−2 . . . 𝜀0 >2h 𝑚𝑊
𝑚𝑍

𝜀−2 . . . 𝜀0 20m

𝑚𝑊
𝑚𝑍

𝜀−2 . . . 𝜀0 1m 𝑚𝑊
𝑚𝑍

𝜀−3 . . . 𝜀0 27s

Table 1: The time needed to integrate the depicted integrals to 3 digits of precision on an NVidia A100 GPU
with pySecDec 1.5.3.

2.1 Choosing the master integrals

The choice of master integrals greatly affect both the time it takes to solve IBP equations and the
time it takes to evaluate the resulting amplitudes numerically. This is why we spend extra effort on
it. We choose a basis that:

• is quasi-finite [30];

• is 𝑑-factorizing [31, 32];

• results in IBP coefficients with small polynomials;

• avoids 𝜀 poles in the coefficients of top-level sectors;

• avoids 𝜀 poles in the differential equation matrix for the master integrals;

• is fast to evaluate with pySecDec.

Satisfying all of these conditions simultaneously is not generally possible; instead we make sure
the first two are always satisfied, and approach the rest heuristically by trying many different
basis choices. In particular, we consider integrals with denominator power raised by up to 6, and
dimensionally shifted integrals in 𝑑 = 6 − 2𝜀 and 𝑑 = 8 − 2𝜀.

As an illustration of the importance of optimizing the master integral choice, consider the task
of integrating the integrals in Table 1 to 3 digits of precision: the four integrals differ only in the
location of the dot (i.e. which of the denominator is raised to power 2), but the runtime differs by a
factor of 200.

2.2 Solving IBP equation with Rational Tracer

The standard methods of solving IBP equations nowadays is the combination of the Laporta algo-
rithm [33] with finite field rational function reconstruction methods [34, 35]. In such an approach
one repeatedly solves the system of IBP equations (by Gaussian elimination) while using modular
arithmetic and having all variables set to numbers modulo a large (usually 63-bit) prime number.
Once the system is solved enough times, it is possible to reconstruct the IBP coefficients as ratio-
nal functions of the input variables. Many modern IBP solvers, such as Kira+FireFly [36, 37],
Fire6 [38], FiniteFlow [39], Caravel [40], etc, use this method either by default or as an option.
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In [27] it was noticed that there is an inefficiency in the common approach to modular Gaussian
elimination: a lot of time is wasted on overhead of data management, and not on performing
modular arithmetic. A solution was proposed: solve the system once, record each arithmetic
operation performed during the elimination forming an execution trace (or simply a trace), and
replay this trace each time an modular evaluation of the solution is needed. In our case this method
(as implemented in Ratracer) improves the evaluation times of the IBP solution by a factor of
∼10 compared to Kira+FireFly. A further reduction by a factor of ∼3 is achieved if the trace is
expanded in 𝜀, so that instead of outputting IBP coefficients as rational functions of 𝜀, the output
would be the terms of 𝜀 expansion of the IBP coefficients directly (this is also a builtin capability
of Ratracer).

Because we perform IBP reduction for each phase-space point separately (setting all the
kinematic variables to rational numbers) and combine it with 𝜀 expansion of the trace (eliminating
𝜀 as a variable), the outputs of the trace are no longer rational functions, but rather rational
numbers. This means that we do not need to perform rational function reconstruction; we only
need the Chinese remainder theorem and rational number reconstruction—much simpler and faster
algorithms (which Ratracer implements).

Overall we can perform IBP reduction in under 2 minutes per phase-space point on 1 CPU
core. We consider this to be fast enough for our needs.

2.3 Evaluating Feynman integrals with pySecDec

Once IBP reduction is complete we are left with evaluating the master integrals. For this we use the
method of sector decomposition [41–44] as implemented in pySecDec [45–48]. We specifically
rely on its ability to adaptively evaluate weighted sums of integrals. While in our case the 831
master integrals are split into 18000 sectors, each having multiple orders in 𝜀, for a total of 28000
integrals, not all of these integrals contribute equally to the 9 symbolic structures we are interested
in: some of them are naturally smaller or converge faster than the others, and others have small
coefficients in front of them—pySecDec is equipped to automatically take this into account and
sample the integrals that contribute the most, not wasting time on the others.

The adaptive sampling combined with the latest performance improvements in the form of
the Disteval evaluator in version 1.6 allow us to calculate the value of the amplitudes with 0.3%
precision in 5 minutes on a single NVidia A100 GPU for phase-space points in the bulk. For points
closer to the edges of the phase-space, such as the high-energy region, the runtime grows the closer
one gets to the edge—and does so indefinitely. The reason is numerical: when the kinematics
becomes extreme a lot more of cancellations inside the integrals as well as between them happens,
so each integral needs to be calculated to higher precision to achieve the overall precision target of
the amplitude.

In fact, we have observed that for some points in the high-energy region the IBP coefficients
grow very large, while the amplitude remains small, e.g.:

C = 1029 + 1029
6d

+ 1024
6d

+ 1024
6d

+ 1024
6d

+ 1019 + 1019 + 1018 + · · · ≈ 10−3,

(7)
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Figure 2: Event probability distribution in 𝛽2 (left), and 𝛽2 and frac𝑠𝑡𝑡 (right), according to the leading order
𝑞𝑞 → 𝑡𝑡𝐻 amplitude. For this plot we take the energy of incoming quarks to be distributed according to the
ABMP16 parton distribution functions [51] (which we evaluate via LHAPDF [52]), with the collision energy
set to 13.6 TeV. We have also applied cuts on the top quark momenta in line with those reported in [1, 5]:
we enforce a minimal transverse momentum of 25 GeV, a maximal rapidity of 4.5, and a separation Δ𝑅 in
rapidity and azimuthal angle between the top quarks of Δ𝑅 > 0.4.

meaning that there are more than 20 digits of numerical cancellation occurring. This means that
even if we knew the values of each of the integral involved in the cancellation to the full machine
double floating point precision, which is 16 digits, that would still be insufficient to get even a
single significant digit of the amplitude. As a solution we have found that if we upgrade pySecDec
to, instead of using double, use double-double [49, 50], a data type supporting up to 32 digits of
precision, then it can in fact give more than 20 digits of precision to the integrals we need, and
the giant cancellation is resolved. To this end, we use a custom implementation of double-double
arithmetic, specifically written for use on the GPU.1

Note that getting 20 digits of precision for these integrals would not have been feasible with a
Monte Carlo integrator. The reason why pySecDec is able to handle these integrals to such a high
precision is the use of quasi-Monte Carlo integration [45, 47].

Seeing the performance degradation in the high-energy region, an important question is: is the
phase-space region that numerical evaluation can effectively cover sufficient for phenomenological
applications? The answer turns out to be yes: performing just the leading-order analysis, from
Figure 2 we can see that 99% of the events happening at LHC are expected to lie within the
incoming energy range of [0.5; 2.1] TeV; in this region the pySecDec evaluation time can go up to
24 hours at 2.1 TeV, but quickly drops to 5 minutes at lower energies.

1On the CPU one would normally consider using quadruple precision floating point numbers for this task; these
support up to 34 digits of precision. We chose otherwise because double-double is generally faster than quadruple, and
because NVidia C compiler does not support either on the GPU, so a custom implementation is needed in any case.
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Figure 3: Two-dimensional slices of C/A around the center point eq. (8). The center point is marked with
a star. For these plots we have set 𝑚2

𝐻
to 12/23𝑚2

𝑡 , and the renormalization scale to 𝑠/2.

3. Results

To showcase the results we choose a center point of

𝛽2 = 0.8, frac𝑠𝑡𝑡 = 0.7, cos 𝜃𝐻 = 0.8, cos 𝜃𝑡 = 0.9, cos 𝜑𝑡 = 0.7, (8)

and plot the calculated amplitudes in two-dimensional slices around it: see Figure 3 for the plots of
two-loop amplitude C, and Figure 4 for equivalent one-loop results (as a reference for comparison).
Note that the ratio C/A diverges close to the edge of frac𝑠𝑡𝑡→0 (same as B/A). This is a Coulomb
singularity related to the exchange of a gluon between the outgoing top quarks This divergence is
proportional to 1/

√︁
frac𝑠𝑡𝑡 (see [53, Section 2.4.1]); it is suppressed by the phase-space density,

which is ∝
√︁

frac𝑠𝑡𝑡 in this limit.

4. Summary and outlook

We have presented the calculation of the 𝑁𝑓 part of the two-loop virtual amplitude for 𝑞𝑞 → 𝑡𝑡𝐻

production. This calculation serves as a proof of concept of the overall method: using Rational
Tracer for IBP reduction separately for each phase-space point, and a version of pySecDec extended
with support for double-double integration for evaluating the IBP-reduced amplitudes. We expect

8
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Figure 4: Same plots as in Figure 3, but for the one-loop amplitude B.

to be able to apply this method to the calculation of the non-𝑁𝑓 parts of 𝑞𝑞 → 𝑡𝑡𝐻, as well as to
𝑔𝑔 → 𝑡𝑡𝐻, thus opening the way towards full NNLO analysis of 𝑡𝑡𝐻 production at LHC.

The main obstacle we see in such application is performance: practical use of the obtained
results requires dense enough sampling of the relevant parts of the phase space, which translates
into a high number of evaluations, due to the phase space being 5-dimensional, and possibly a large
computational investment, because each phase-space point takes at least 5 minutes to evaluate. To
alleviate these difficulties we would like to supplement the evaluated values with an interpolation
framework, which should provide values of the amplitude across the relevant parts of the phase
space with sufficient precision. Our experience shows that different interpolation methods might
require different number of evaluations before the target precision is reached across the whole phase
space, so selecting an appropriate interpolation framework is an open question that we see as an
important part of the overall performance optimization.
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