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1. Introduction

This contribution to proceedings of the Loops and Legs in Quantum Field Theory (LL2024) results
from my effort to understand early determinations of radiative corrections (RC) to the beta decay
and to the muon decay, and to reconcile those results with modern literature.
Muon and the beta decays are subjects of very active current research. On the experimental side,
there is an abundance of new and upcoming facilities including high-flux reactor and spallation
sources of neutrons in Europe [1], China [2], Japan [3], and the USA [4]. Neutron lifetime puzzle,
a disagreement between beam and bottle methods (see for example [5] for a recent point of view),
persists and motivates new efforts (see for example [6]). Exciting new spectroscopic tools are being
developed for low-energy electrons produced in the beta decay, including Cyclotron Radiation
Electron Spectroscopy [7].
On the theory side, a very recent study reevaluated RC for superallowed beta decays [8, 9]. Large
logs in neutron and more general beta decays have been summed to all orders [10]. It has been
proposed to use lattice QCD to help determine a particularly difficult aspect of the neutron RC [11].
Other recent developments have been recently reviewed in [12, 13].
The muon decay, whose amplitude is shown is Fig. 1(a), plays a special role in the Standard Model
(SM) as the source of the Fermi constant,�� ' 10−5/GeV2 [14]. �� is one of the pillars of the SM
precision tests as one of its most precisely determined parameters, together with the fine structure
constant U ' 1/137 and the mass of the / boson </ .

(a) (b)

Figure 1: Tree-level Feynman diagrams describing (a) muon decay and (b) beta decay at the quark level.

Among beta decays, I will focus in particular on the neutron decay whose quark-level amplitude is
shown in Fig. 1(b). If we express muon and neutron decay rates as

Γ
(
`→ 4a` ā4

)
= 2`6

4 (
1 + RC`

)
, (1)

Γ (=→ ?4ā4) = 2=64 (1 + RC=) , (2)

the weak coupling constant 6 can be eliminated and we get approximately

Γ (=→ ?4ā4) =
2=

2`
Γ

(
`→ 4a` ā4

) (
1 + RC= − RC`

)
(3)

= 2′=�
2
�

(
1 + RC= − RC′`

)
, (4)
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where 2=, 2`, 2′= are combinations of experimentally-accessible quantities such as particle masses.
We can therefore obtain a precise prediction for the neutron decay rate using the measured muon
lifetime and the theoretical expression for the difference of radiative corrections to the neutron and
the muon decays, RC= − RC′`. The prime on RC′` indicates that a part of RC to the muon decay is
absorbed in the definition of the Fermi constant.
In this paper I review some aspects of the early studies of RC. A much more extensive historical
perspective can be found in the review [15]. An excellent discussion of RC in the Standard Model,
in particular to the muon decay, is provided in Ref. [16]. Units in this paper are such that 2 = ℏ = 1.

2. RC for the muon decay

A landmark paper that first determined radiative corrections to general decay processes of charged
fermions was Ref. [17], written by two graduate students (Ralph Behrends and Alberto Sirlin)
and their supervisor Robert Finkelstein. That work was later refined and extended by Sirlin and
collaborators, including Tom Kinoshita.
One aspect of that pioneering study was corrected by Samuel Berman in his doctoral thesis [18, 19]
(he was one of only a handful of PhD students working under Richard Feynman). While both groups
were in agreement about virtual corrections, Berman found an error in the treatment of the real
radiation in [17]. He pointed out that when a finite photon mass is introduced to regulate infrared
(IR) divergences, the photon must be consistently treated as a massive particle both in virtual and in
real radiation. While the photon was treated as massive in virtual corrections in [17], it was treated
as massless in the real radiation (a mass parameter was introduced as a lower limit in the integration
over the energy of the photon). As a result, Berman found that the O (U) correction to the muon
decay rate is small and negative rather than large and positive.
Since Berman found agreement with [17] for virtual corrections, he did not repeat their formula in
his writings. He did present detailed formulas for the real corrections, which he obtained correctly
for the first time. These formulas are present both in his 1958 paper in the Physical Review [18]
and in his PhD thesis [19]. Unfortunately in both instances there are typographical errors, different
in each case. Here is the corrected form,

11 = 2- +
(ln [ + l − 1) (1 − [)

(
5
[
+ 17 − 34[

)
3 (3 − 2[) [ + 5 (1 − [)2

3 (3 − 2[) [2 , (5)

- = (ln [ + l − 1)
(
2 ln (1 − [) − ln [ + l − 2 ln

_<

<4

)
+ Li2 ([) −

c2

6
− 1 − [

[
ln (1 − [) . (6)

Here [ denotes the normalized energy of the electron, [ = 2�4/<`, l is the logarithm of the ratio
of the muon to the electron mass, l = ln

(
<`/<4

)
, and _< is the small photon mass introduced as

the infrared regulator. With respect to the Physical Review [18] version, the only correction is the
factor [2 in the denominator in the last term of Eq. (5). In Eq. (28) of the PhD thesis [19] that factor
is partially present as [ (it should be [2); also, the factor [ in the denominator of the middle term
of Eq. (5) is missing in the PhD thesis. The polylogarithm in Eq. (6) is defined as

Li2 ([) =
∞∑
:=1

[:

:2 , (7)
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whereas in the PhD thesis there is : instead of :2 in the denominator.
The real radiation correction 11 enters the decay rate formula in the following way,

dΓ
(
`→ 4ā4a`

)
d[

=
�2
�
<5
`

96c3 [2 (3 − 2[)
[
1 + U

2c
(U1 + 11)

]
, (8)

where U1 describes virtual corrections and is given by Eqs. (24b,d) in [17]. The sum U1 + 11 is
free from the dependence on _<. Note that the above formulas are valid in the limit of the electron
much lighter than the muon; corrections O

(
<4/<`

)
are not shown.

Berman’s corrected treatment of the real radiation inspired the paper by Kinoshita and Sirlin
[20] that, in addition to presenting a corrected result for the muon decay, contained the seminal
observation of the cancellation of the logarithms of the electron mass in the total decay rate, despite
their presence in the differential rate (the energy spectrum). The same cancellation was observed
in the asymmetry of the polarized muon decay (the difference of the fraction of electrons emitted
along the polarization vector of the muon and in the opposite direction). For the unpolarized decay,
integration over [ ∈ (0, 1) gives the radiative correction to the total decay rate,

Γ
(
`→ 4ā4a`

)
= Γ0 (

`→ 4ā4a`
) [

1 + U

2c

(
25
4
− c2

)]
' Γ0 [1 − 0.4%] , (9)

Γ0 (
`→ 4ā4a`

)
=
�2
�
<5
`

192c3 , (10)

finite in the limit of the zero electron mass.
Finding the correction to the total rate, which is just a number, is much easier than that to the energy
distribution, represented by a function of the energy. Two-loop corrections to the total muon decay
rate were determined in the massless-electron approximation in 1998-1999 [21–23]. Effects of the
electron mass turned out to be somewhat interesting from the theoretical point of view: initially
estimated [22] to enter at the quadratic order ∼

(
<4/<`

)2, they turned out [24] to be linear in
<4/<` and thus much larger. This is related to using the pole mass of the muon in the calculation.
More recently, even the three-loop corrections have been determined [25, 26]. The key to this result
was the surprisingly rapidly converging expansion in the difference of the muon and electron masses
[27]. For the energy distribution, only the two-loop correction has been published so far [28], as
well as partial higher-order effects (see [29] and references therein).

3. RC for the neutron decay

3.1 Berman’s 1958-1959 work

In addition to the muon decay, Berman studied also the neutron decay, assuming for simplicity
that the neutron and the proton have no internal structure [18, 19]. This is the reason why, as we
shall see, the mass of a nucleon (<# , # = ? or =) appears in the argument of a large logarithm.
For physical nucleons, their structure and the resulting smeared distribution of the electric charge
temper the short-distance behavior of photon loops. The mass of the nucleon is then replaced by a
hadronic scale Λ ' 100 MeV [10].
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Berman’s analysis was partially motivated by applications to the beta decay of oxygen-14, an
example of a so-called superallowed beta decay,

14O→14 N + 4+ + a4 . (11)

Here and in the neutron decay, there is a charged daughter nucleus/nucleon in the final state,
in whose Coulomb field the beta particle is emitted. Berman noted that structure-dependent
corrections are likely larger in the case of the oxygen decay than in the case of the neutron because
possible intermediate excited states might be less separated, leading to larger energy denominators
in perturbation theory.

3.2 Berman and Sirlin’s 1962 paper

In 1962 Berman and Sirlin wrote their only joint paper [30]. They discovered that in the Landau
gauge (also called transversal) real and virtual corrections are separately IR finite. There is then
no need to introduce the photon mass. This settled a discussion about the correctness of IR
regularization.
Berman and Sirlin presented the one-loop corrected beta-decay rate,

Γ (=→ ?4ā4) = Γ0
[
1 + U

2c

(
6 ln

Λ

<?
+ 3 ln

<?

�<
+ 5 (�, �<)

)]
, (12)

where Γ0 is the rate without radiative corrections and 5 is a “complicated function of the electron
energy” whose explicit formula they included. In the context of the then persisting discrepancy
between Fermi constant determined from the muon and from the beta decay, the authors stressed
that corrections to the beta decay depend logarithmically on an ultraviolet (UV) cutoff Λ, unlike
those to the muon decay. This leaves a free parameter in the comparison. If Λ were of the order of
the kaon mass, the discrepancy would be removed. We now know that the cutoff is much higher,
on the order of the electroweak scale (intermediate boson mass), and the discrepancy is instead
removed by the Cabbibo angle [31]. In the next section, the UV cutoff dependence will be related
to the result in the present electroweak theory. One might expect that this cutoff should be replaced
by an electroweak boson mass. Since the muon decay rate is independent of the UV cutoff (Eq. (9),
which is the muon-decay analog of Eq. (12), has noΛ dependence), one might expect the coefficient
of ln<, ,/ in the modern theory to be 6U/(2c). We shall see that this is not the case.
Before discussing this, consider the second log term in Eq. (12). Its argument is the ratio of the
mass of the nucleon to the energy released in the decay. This logarithm is large in the case of the
neutron decay because the released energy is a tiny fraction of the neutron mass. Namely, with
neutron and proton masses being <= = 939.6 MeV and <? = 938.3 MeV, the total energy of the
electron and its antineutrino is about 1.3 MeV, and 3U/(2c) ln

(
<?/�<

)
= 2.3%. In the case of the

muon, almost its whole rest energy is converted into the kinetic energy of daughter particles and
therefore the logarithm is small [18, 19]. This is the reason why RC are much larger in the decay of
the neutron than of the muon.

3.3 Why do RC depend on the UV cutoff in case of the neutron but not muon?

Eqs. (9) and (12) describe one-loop photonic corrections tomuon and neutron decays obtained before
the modern electroweak theory was discovered. After its formulation (see [32] for a historical
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overview) and the discovery of its renormalizability [33], a calculation of RC became possible
without any UV cutoff. The decay rate of the neutron in terms of the Fermi constant from the muon
lifetime [34] is [35–39]

Γ (=→ ?4ā4) = Γ0 (=→ ?4ā4)
[
1 + U

2c

(
4 ln

</

<?
+ . . .

)]
, (13)

where the dots denote terms without large logarithms involving electroweak boson masses. Since
corrections to the muon decay (9) have no Λ dependence, it may seem puzzling why 6 lnΛ in
Eq. (12) has been replaced by the modern 4 ln</ in (13). In this section we clarify this issue.
Comparing tree-level diagrams for the muon and the beta decays in Fig. 1 we see that electroweak
corrections to the electron line and to the, propagator are the same in both cases and thus cancel
in the ratio of the decay rates (are absorbed in �� determined from the muon decay). The only
difference is the 4-momentum transferred through the , to the electron line but it is negligible in
comparison with the masses of,, /, � bosons.
Differences can however be expected in / and W corrections to the wave function renormalization
constants /2 and to the upper vertex, as well as in all box diagrams. To clarify the dependence on
the UV cutoff, so it is sufficient to discuss UV divergent diagrams. All results below will be given
in the Feynman gauge. Feynman rules are used in the convention defined in [40], whose notation
for couplings is adopted here.
Consider first / loops. The / boson can connect any fermion line with the , propagator or with
the same or different fermion line. Box diagrams are UV finite so they do not have to be considered.
Thus we only consider the / exchanged within the upper fermion line in diagrams in Fig. 1 or
connecting that line with the , propagator. While some individual diagrams differ between the
beta decay and the muon decay, their sum is the same. This is because the sum is proportional to
the difference of / couplings to left-handed fermions, and that difference is the same for quarks and
for leptons, 6−D − 6−3 = 6

−
a − 6−`,

Similarly, the photon exchange between the upper fermion line and the, propagator gives the same
contribution in both processes because the electric charges satisfy &3 −&D = −1 = &`.
The only remaining class of corrections are photon exchanges among the fermion lines. They are
shown in Fig. 2, with the, propagator represented by a cross in a circle.

(a) (b) (c)

Figure 2: One-loop corrections to the beta (muon) decay in the four-fermion theory.

Neglecting the momentum flowing in the , propagator leads to an effective theory with a 4-
fermion (4F) coupling. UV divergences in that “4F” theory are summarized in Table 1. An in-depth
discussion of RC in the full Standard Model and the 4F theory is given in [41].
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Contribution Muon decay Decay 3 → D

(a)+(b) &4&` = 1 &4 (&3 − 4&D) = 3
(c)+/2 − 1

2

(
&2
` +&2

4

)
= −1 − 1

2
[
(&3 −&D)2 +&2

4

]
= −1

Total UV divergence in the 4F theory 0 2

Table 1: UV divergences in the 4-fermion (4F) effective theory for the muon and for the beta decays. In
column 1, (a,b,c) refer to diagrams in Fig. 2 and /2 is the sum of wave function renormalization constants
of the charged fermions in each process. In order to find contributions to the decay rate, the integer results
should be multiplied by U

2c ·
1
n
· `−2n where ` is a mass scale such as the muon mass in case of the muon

decay and n is the parameter of the dimensional regularization in � = 4 − 2n dimensions.

In particular we see that the correction to the muon decay calculated in the 4F theory is UV-finite.
However, Table 1 shows that this finiteness results from a cancellation between contributions of the
box in Fig. 2(a) and the wave function renormalization constants. But the box diagram would have
been UV finite, had we kept the momentum of the, in its propagator. This means that there are in
fact RC to the muon decay that are sensitive to large virtual momenta of the order of the electroweak
scale and that in this sense their early evaluations were perhaps somewhat misleading.
Of course, the same remark about the momentum of the , boson applies also to the beta decay.
Table 1 shows that the coefficient of the UV divergence in this case is 2. This number means that
the low-energy 4F theory makes a UV divergent contribution to the decay rate,

ΔΓ4� =
U

2c
·
(
2
n
− 4 ln `

)
. (14)

Assume that the only large mass scale in the full theory is </ ' <, . In order to cancel the
UV divergence of the 4F theory, the large mass scale contribution must be, apart from finite
non-logarithmic terms,

ΔΓlarge scale =
U

2c
·
(
−2
n
+ 4 ln</

)
, (15)

giving the total correction ΔΓ = U
2c · 4 ln </

`
and thus confirming the large log in the modern

prediction (13).
How then was the coefficient U

2c · 6 of lnΛ arrived at in the early calculations that led to Eq. (12)?
Those studies, predating the quark model, considered the nucleon decay = → ?4ā, with only two
charged particles ?, 4, just like in the muon decay. In both cases it was therefore possible to use Fierz
transformation [42] to bring the decay amplitude to the so-called charge-retention order, where both
charged particles form a single fermion line. However, in the muon decay one charged particle is
in the initial and the other in the final state, whereas in the neutron case both charged particles are
in the final state. As a result, whereas in the muon case the Fierz transformation does not alter the
Dirac structure of the vector-minus-axial vertex, in the neutron case it changes it into a combination
of a scalar and a pseudoscalar. This combination has an anomalous dimension that results in the
UV cutoff dependence. The anomalous dimension of the + − � operator vanishes and thus the
muon decay is UV finite in the 4F theory (see also [43]).
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4. Summary

Berman’s paper [18] and PhD thesis [19] followed the breakthrough Theory of Fermi interaction by
Feynman and Gell-Mann [44]. That seminal study made it possible to compare the Fermi constant
�� determined from the muon and from beta decays. Before Berman’s work, the value from the
muon decay was too large in comparison with that from the beta decays.
Berman’s work partially alleviated that tension – but not entirely. The small remaining discrepancy
was due to the Cabibbo angle \� , whose discovery followed about four years later [31]. By partially
suppressing the rate of the beta decay, the presence of cos \� makes the measured coupling seem
smaller than it really is (today we would express the suppression factor by a parameter of the
Cabibbo-Kobayashi-Maskawa matrix, |+D3 |2).
Hopefully the present note will help to preserve the memory of Samuel Berman’s work.
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