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1. Introduction

We are living in the precision era of LHC physics: precise measurements are common-place
today. For example, we refer to the 𝑝⊥ distribution for lepton-pairs produced in the Drell-Yan
process at low-𝑝⊥ values [1, 2]. High-precision measurements are necessary but not sufficient to
drive the physics potential of the LHC to the maximum. In order to harvest the most information
equally high-precision predictions are needed from the theory side. Such predictions are needed to
successful searches for physics beyond of the standard model as well as provide the key to precision
phenomenology.

For high-precision predictions higher-order calculations are needed in both sectors of the
standard model: in quantum chromodynamics (QCD) and the electroweak sector. These calculations
are cumbersome, technologically challenging and CPU-time hungry. High-accuracy measurements
impose yet one more requirement on these calculations, namely not only the formal, but also the
numerical accuracy of the computations should be decent enough to meet the expected precision of
the predictions.

The QCD corrections are usually sizable at the LHC, which necessitates to go beyond the next-
to-leading order (NLO) in the computations. Hence several calculational schemes were constructed
for making QCD predictions at the next-to-next-to-leading order (NNLO) accuracy. Although these
methods can be used to produce cross section values, the uncertainty of the required numerical
integrations is often insufficient for the expected precision. The trivial solution to this problem
is the increase of computational time, which however comes with a high price. The CPU time
devoted to such calculations has reached millions of hours. As science is a part of society, it cannot
be insensitive to problems of society. Energy efficiency is paramount for a sustainable society,
which imposes an extra constraint on our calculation schemes. While high theoretical accuracy and
numerical precision are expected, those should be reached with as little CPU time as possible. This
requirement leads us to investigate any new idea in regards to calculating higher-order corrections
promising higher energy efficiency.

One such idea is the Local Analytical Subtraction Scheme (LASS) [3–5]. While the LASS has
been developed primarily for electron-positron collisions, the simplicity of its subtraction structure
and the resulting integrated terms suggest possible generalization to collisions with initial states
involving QCD partons. Despite the theoretical foundation laid out in the original publications, a
comprehensive numerical implementation at NNLO remains lacking. Our objective is to address
this gap by developing a numerical implementation of the LASS formalism. In the following
sections, we outline our efforts to implement and validate the essential ingredients required for
the 𝑛 + 2 parton contribution, i.e. the regularized double-real radiation contribution, within the
framework of an NNLO QCD calculation.

2. LASS from the practitioner’s point of view

In perturbative QCD the cross section is defined as a series in the strong coupling 𝛼S . The
fully differential cross section can formally be written as:

d𝜎 = d𝜎LO + d𝜎NLO + d𝜎NNLO + . . . , (1)
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where we labelled the first, non-vanishing contribution as LO (for leading order), and kept the next
two orders (NLO and NNLO). The LO contribution is the fully differential Born cross section,

d𝜎LO = d𝜎B . (2)

Beyond LO several different ingredients build up the cross section contribution. These ingre-
dients are categorized according to the number of additional partons present as virtual particles
in loops, or real ones in the final state. The correction at NLO is a sum of two terms, the single
real and virtual contributions, while at NNLO there are double-real, real-virtual and double-virtual
corrections,

d𝜎NLO = d𝜎R + d𝜎V , d𝜎NNLO = d𝜎RR + d𝜎RV + d𝜎VV . (3)

In this contribution we are going to focus on the regularized real-emission contributions being
the most CPU time consuming elements of N𝑛LO QCD calculations. We shall discuss the case of
leptons in the initial state as the LASS is published for electron-positron collisions. We shall use the
definitions of Ref. [5], in particular introduce the concept of scaleless energies and angle variables
characterizing softness and collinearity of parton emissions in terms of two-particle invariants
𝑠𝑖 𝑗 = 2𝑝𝑖 · 𝑝 𝑗 ,

𝑒𝑖 =
𝑠𝑖𝑞

𝑠
, 𝑤𝑖 𝑗 =

𝑠 𝑠𝑖 𝑗

𝑠𝑖𝑞𝑠 𝑗𝑞
=
𝑠𝑖 𝑗

𝑠

𝑠2

𝑠𝑖𝑞𝑠 𝑗𝑞
, (4)

where 𝑞 is the total incoming four-momentum, 𝑞𝜇 = (
√
𝑠, 0, 0, 0). The same quantities can also be

expressed through energies and angles as

𝑒𝑖 =
2𝐸𝑖√
𝑠
, 𝑤𝑖 𝑗 =

1
2
(
1 − cos 𝜃𝑖 𝑗

)
. (5)

These variables give a convenient way to parametrize the various kinematic singularities at NLO
and to define appropriate subtraction terms S𝑖𝑅 in the single-soft (𝑒𝑖 → 0) and C𝑖 𝑗𝑅 in the single-
collinear (𝑤𝑖 𝑗 → 0) limits. In these subtraction terms an operator-like behavior is understood in
order to take into account color- (soft) and spin-correlations (collinear) and to replace real-emission
dynamics with underlying, non-singular Born multiplied by a factor mimicking the singular behavior
of original real radiation squared matrix element (SME) 𝑅 = |M𝑛+1 |2. The soft and collinear regions
are not disjoint. The overlaps should be removed in order to avoid double subtractions. Considering
all kinematic singularities the regularized real emission can be cast into a form of

𝑅 −
∑︁
𝑖

[
S𝑖 +

∑︁
𝑗>𝑖

C𝑖 𝑗

(
1 − S𝑖 − S 𝑗

)]
𝑅 , (6)

where we used the operator-like actions in the subtraction terms. Because the overlap removal
can be achieved by dropping soft terms from two-particle Altarelli-Parisi kernels the regularized
real-radiation SME can be greatly simplified and written in the short form 𝑅 − 𝐾 (1) where

𝐾 (1) =
∑︁
𝑖

S𝑖𝑅 +
∑︁
𝑖

∑︁
𝑗>𝑖

HC𝑖 𝑗𝑅 . (7)
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The new notation for the modified collinear subtractions stands for the hard-collinear terms with
the meaning of removed soft pieces from two-particle Altarelli-Parisi kernels.

At NNLO the set of possible kinematic singularities is enlarged, but it is still possible to
characterize and define subtractions using only the scaleless variables previously defined. The
single unresolved subtractions are analogous to those in Eq. (6) with 𝑅 replaced with 𝑅𝑅 = |M𝑛+2 |2.
The double soft (𝑒𝑖 , 𝑒 𝑗 → 0) and soft-collinear singularities are regularized as

𝑅𝑅 − S𝑖 𝑗𝑅𝑅 , 𝑅𝑅 − SC𝑖 𝑗𝑘𝑅𝑅 , (8)

while the triple (𝑤𝑖 𝑗 , 𝑤𝑖𝑘 , 𝑤 𝑗𝑘 → 0) and double collinear (𝑤𝑖 𝑗 , 𝑤𝑘𝑙 → 0) singularities are regu-
larized as

𝑅𝑅 − C𝑖 𝑗𝑘𝑅𝑅 , 𝑅𝑅 − C𝑖 𝑗𝑘𝑙𝑅𝑅 . (9)

Overlapping singular regions are also present among subtraction terms for double unresolved limits.
To remove these overlaps, in addition to the single hard-collinear limit of Eq. (7) with the replacement
𝑅 → 𝑅𝑅, we introduce the following combinations, defining the hard-collinear limits:

HC𝑖 𝑗𝑘𝑅𝑅 = C𝑖 𝑗𝑘

(
1 − S𝑖 𝑗 − S𝑖𝑘 − S 𝑗𝑘

)
𝑅𝑅 ,

SHC𝑖 𝑗𝑘

(
1 − C𝑖 𝑗𝑘

)
𝑅𝑅 = SC𝑖 𝑗𝑘

(
1 − S𝑖 𝑗 − S𝑖𝑘

) (
1 − C𝑖 𝑗𝑘

)
𝑅𝑅 ,

HC𝑖 𝑗𝑘𝑙𝑅𝑅 = C𝑖 𝑗𝑘𝑙

(
1 + S𝑖𝑘 + S 𝑗𝑘 + S𝑖𝑙 + S 𝑗𝑙 − SC𝑖𝑘𝑙 − SC 𝑗𝑘𝑙 − SC𝑘𝑖 𝑗 − SC𝑙𝑖 𝑗

)
𝑅𝑅 .

(10)

Then the subtraction terms for the regularization of singularities in the double unresolved regions
for the double-real radiation SME, 𝑅𝑅 − 𝐾 (1) − 𝐾 (2) , can be grouped using the hard-collinear
notation as follows:

𝐾 (1) =
∑︁
𝑖

S𝑖𝑅𝑅 +
∑︁
𝑖

∑︁
𝑗>𝑖

HC𝑖 𝑗𝑅𝑅 , (11)

𝐾 (2) =
∑︁
𝑖

∑︁
𝑗>𝑖

S𝑖 𝑗𝑅𝑅 +
∑︁
𝑖

∑︁
𝑗>𝑖

∑︁
𝑘> 𝑗

HC𝑖 𝑗𝑘𝑅𝑅+

+
∑︁
𝑖

∑︁
𝑗≠𝑖

∑︁
𝑘> 𝑗
𝑘≠𝑖

SHC𝑖 𝑗𝑘

(
1 − C𝑖 𝑗𝑘

)
𝑅𝑅 +

∑︁
𝑖

∑︁
𝑗>𝑖

∑︁
𝑘>𝑖
𝑘≠ 𝑗

∑︁
𝑙>𝑘
𝑙≠ 𝑗

HC𝑖 𝑗𝑘𝑙𝑅𝑅 . (12)

This construction allows for a partial kinematic regularization expressed in the following symbolic
form: (

𝑅𝑅 − 𝐾 (1)
)���

singly−unres.
= finite ,

(
𝑅𝑅 − 𝐾 (2)

)���
doubly−unres.

= finite . (13)

However, as a consequence of 𝐾 (1) developing spurious singularities in doubly-unresolved and
𝐾 (2) developing spurious singularities in singly-unresolved regions of phase space,(

𝑅𝑅 − 𝐾 (1) − 𝐾 (2)
)���

singly− & doubly−unres.
≠ finite . (14)

To have full kinematic regularization an additional collection of terms has to be introduced:(
𝑅𝑅 − 𝐾 (1) − 𝐾 (2) − 𝐾 (12)

)���
singly− & doubly−unres.

= finite , (15)
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where the role of the newly introduced contribution, 𝐾 (12) is two-fold. It regularizes spurious
singularities of 𝐾 (1) in doubly- and those of 𝐾 (2) in singly-unresolved regions.

In this contribution we focus on the regularization of the double-real radiation. In order not to
change the complete NNLO correction, the subtraction terms 𝐾 (𝑖) (𝑖 = 1, 2, or 12) will be integrated
analytically over the one- or two-particle radiation phase spaces depending on the subtraction terms,
and subsequently added to the real-virtual and double virtual contributions with reduced particle
multiplicity in final-state. A companion contribution [6] gives details how this is done in the case
of the correction with 𝑛 + 1 partons in the final state.

Due to its double role, the definition of the 𝐾 (12) subtraction is fairly delicate, which is
facilitated by the introduction of sectors, where only a subset of the singular regions exists. The
sectors are specified by introducing corresponding sector functions

Z𝑖 𝑗𝑘 , Z𝑖 𝑗𝑘𝑙 , (16)

whose detailed construction is presented in Sections 3.2 and 3.6 of Ref. [5]. In order not to change
the physical cross section, the sector functions must fulfil the important sum rule

1 =
∑︁

𝑖< 𝑗<𝑘

Z𝑖 𝑗𝑘 +
∑︁
𝑖 , 𝑗
𝑗>𝑖

∑︁
𝑘>𝑖
𝑘≠ 𝑗

∑︁
𝑙>𝑘
𝑙≠ 𝑗

Z𝑖 𝑗𝑘𝑙 , (17)

which offers a way to continuously partition the double-real emission phase space:

dΦ𝑛+2 =
∑︁

𝑖< 𝑗<𝑘

Z𝑖 𝑗𝑘dΦ𝑛+2 +
∑︁
𝑖 , 𝑗
𝑗>𝑖

∑︁
𝑘>𝑖
𝑘≠ 𝑗

∑︁
𝑙>𝑘
𝑙≠ 𝑗

Z𝑖 𝑗𝑘𝑙dΦ𝑛+2 . (18)

The sectors defined by sector function Z𝑖 𝑗𝑘 contain singular regions where the subtraction terms(
S𝑖 , S 𝑗 , S𝑘 ,C𝑖 𝑗 ,C𝑖𝑘 ,C 𝑗𝑘 , S𝑖 𝑗 , S𝑖𝑘 , S 𝑗𝑘 , S𝑖C 𝑗𝑘 , S 𝑗C𝑖𝑘 , S𝑘C𝑖 𝑗 ,C𝑖 𝑗𝑘

)
𝑅𝑅 (19)

becomes singular, while the sectors corresponding to Z𝑖 𝑗𝑘𝑙 contain singular regions where(
S𝑖 , S 𝑗 , S𝑘 , S𝑙 ,C𝑖 𝑗 ,C𝑘𝑙 , S𝑖𝑘 , S𝑖𝑙 , S 𝑗𝑘 , S 𝑗𝑙 , S𝑖C𝑘𝑙 , S 𝑗C𝑘𝑙 , S𝑘C𝑖 𝑗 , S𝑙C𝑖 𝑗 ,C𝑖 𝑗𝑘𝑙

)
𝑅𝑅 (20)

become singular. The operators are meant to affect not just the dynamics but also these sector
functions. The limit(s) corresponding to the subtraction term are strictly taken in the sector
function resulting in a factorized form as defined in Eqs. (3.12) to (3.15) of Ref. [3]. There is
ample freedom choosing the sector functions permitted as long as the analytic integration of the
subtractions is possible.

A subtraction term can contribute in many sectors. The collinear terms necessitate the intro-
duction of reference momenta to define Sudakov parameters. Iterated Catani-Seymour mappings
[7] are used to factorize the real-radiation phase space into a phase space with lower multiplic-
ity times a one- or two-body phase space factor. These mappings depend on the sector and the
subtraction at hand. To have a working subtraction method the integration over factorized one- or
two-body phase spaces should be performed analytically, which is possible if the action of the soft
and hard-collinear operators on the sector functions is to collapse them to unity or factorize them
with mapped momenta (lower multiplicity) to allow for analytical integrations.
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To demonstrate explicitly how these actions take place, consider the definite example of a
single-collinear subtraction term C𝑖 𝑗𝑅𝑅. This subtraction becomes singular in many sectors,
namely in {

Z𝑖 𝑗𝑘 : 𝑘 ≠ 𝑖 , 𝑗
}⋃ {

Z𝑖 𝑗𝑘𝑙 : 𝑘 , 𝑙 ≠ 𝑖 , 𝑗 , 𝑘 < 𝑙
}
. (21)

Thus, the collinear subtractions for the 𝑖 𝑗 splitting pair can be written as:∑︁
𝑘≠𝑖, 𝑗

[
C𝑖 𝑗𝑅𝑅Z𝑖 𝑗𝑘 +

∑︁
𝑙>𝑘

𝑘,𝑙≠𝑖, 𝑗

C𝑖 𝑗𝑅𝑅Z𝑖 𝑗𝑘𝑙

]
=
∑︁
𝑘≠ 𝚥

[
Z 𝚥𝑘C𝑖 𝑗𝑅𝑅 +

∑︁
𝑙>𝑘
𝑘,𝑙≠ 𝚥

Z𝑘𝑙C𝑖 𝑗𝑅𝑅

]
, (22)

where the bar over the sector function signifies that it is calculated with mapped momenta and
𝚥 stands for the mother parton (with mapped momentum) for the 𝑖 𝑗 splitting pair. The reference
momentum can change from sector to sector, hence the subtraction term cannot be factorized.
Still, analytical integration over one-particle radiation phase space is possible with sector functions
depending solely on the momenta of the underlying kinematics.

In a similar fashion we can consider the case of a double-soft subtraction term contributing to
both three- and four-index sectors{

Z𝑖 𝑗𝑘 : 𝑘 ≠ 𝑖 , 𝑗
}⋃ {

Z𝑖𝑘 𝑗𝑙 : 𝑘 ≠ 𝑖 , 𝑗 , 𝑙 ≠ 𝑖 , 𝑗 , 𝑘
}
. (23)

Looking at the double-soft operator acting on the sector functions the following limiting behavior
is observed (cf. Eqs. (3.4), (C.94) and (C.95) of Ref. [5]):

S𝑖 𝑗Z𝑖 𝑗𝑘 =
𝜎𝑖 𝑗 𝑗𝑘 + 𝜎𝑖𝑘 𝑗𝑘 + (𝑖 ↔ 𝑗)∑
𝑚≠𝑖

∑
𝑛≠𝑖, 𝑗 𝜎𝑖𝑚 𝑗𝑛 + (𝑖 ↔ 𝑗) , S𝑖 𝑗Z𝑖𝑘 𝑗𝑙 =

𝜎𝑖𝑘 𝑗𝑙 + 𝜎𝑗𝑙𝑖𝑘∑
𝑚≠𝑖

∑
𝑛≠𝑖, 𝑗 𝜎𝑖𝑚 𝑗𝑛 + (𝑖 ↔ 𝑗) . (24)

Then the full double-soft subtraction for the 𝑖 𝑗 soft pair can be rewritten as

∑︁
𝑘≠𝑖, 𝑗

S𝑖 𝑗𝑅𝑅Z𝑖 𝑗𝑘 +
∑︁

𝑙≠𝑖, 𝑗 ,𝑘

S𝑖 𝑗𝑅𝑅Z𝑖𝑘 𝑗𝑙

 = S𝑖 𝑗𝑅𝑅

S𝑖 𝑗 Z𝑖 𝑗𝑘 +
∑︁

𝑙≠𝑖, 𝑗 ,𝑘

S𝑖 𝑗 Z𝑖𝑘 𝑗𝑙

 = S𝑖 𝑗𝑅𝑅 , (25)

where factorization was made possible by the subtraction being independent of any reference
momentum, hence sector functions. The limit sector function in the square bracket, by construction,
also obey a sum rule, thus adding up to one leaving only a sector-independent subtraction term.

3. Numerical checks

As discussed, the construction of the complete LASS scheme requires many steps:

• mappings to underlying kinematics,
• reference momentum choices,
• Sudakov parametrizations,
• spin- and/or color-correlated SME of reduced kinematics,
• overlap removal.
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The construction of a complete partonic Monte Carlo program requires careful numerical
checks. To this end we selected the specific process of production of three hadronic jets in
electron-positron annihilation.1 Three-jet production at NNLO in QCD has three different classes
of subprocesses with the highest multiplicity in the final state:

𝑒+ 𝑒− → qq̄rr̄𝑔 , 𝑒+ 𝑒− → qq̄qq̄𝑔 , 𝑒+ 𝑒− → qq̄𝑔𝑔𝑔 . (26)

In order to numerically test the subtraction scheme we created a Fortran 90 program which uses
the MPFUN2020 package [8] to evaluate both dynamics and subtractions in arbitrary precision2. In
order to keep numerical precision consistent we re-implemented the tree-level SMEs describing
𝑒+ 𝑒− → 𝑛 partons (𝑛 ≤ 5) using appropriate data types. We used the same framework to test
both the regularized double-real and real-virtual [6] contributions. The latter involves one-loop
contributions up to four partons in the final state, so we also re-implemented these using data types
and special functions provided by the MPFUN2020 package. The limiting behavior affects Sudakov
parameters that appear in the arguments of classical polylogarithms, whose function instances were
changed to special variants supporting arbitrary precision.

To perform complete tests of the subtraction terms, all possible singular limits have to be
iteratively approached. This is achieved by generating an underlying Born phase space point (also
in arbitrary precision) and sequentially increasing the multiplicity of the final state applying the
inverted Catani-Seymour mapping.

To characterize the energies (softness) and enclosed angle (collinearity) of the produced pairs
a 𝜆 ∈ [0, 1] parameter was defined and used. From iteration to iteration appropriately decreasing 𝜆
by (half) an order of magnitude3 all possible NNLO limits could be approached.

The code makes it possible to validate subtraction terms at multiple levels:

• Individual subtraction terms compared to the appropriate radiation SME in their restrictive
limits.

• Individual overlap terms compared to a single subtraction checking proper overlap removal.

• Individual terms defined to cancel spurious singularities compared to a term from 𝐾 (1) or
𝐾 (2) to check cancellation of the spurious singularity.

• Full set of subtractions compared to the radiation SME in all possible physical limits.

In the following we show examples for each of these cases demonstrating the capabilities of our code
and of the subtraction scheme. To be definite we selected the most complicated subprocess with
three gluons in the final state. To refer to various limits, we use the labelling 𝑒+1 𝑒

−
2 → q3 q̄4 𝑔5 𝑔6 𝑔7.

First we consider the individual subtraction terms for double-soft and triple-collinear emissions
that should be compared to the double-real SME in the same limits. In case of correct definition

1The LASS scheme uses iterated Catani-Seymour mappings with reference (recoil) momentum chosen from the final
state, thus it is not suitable for two-jet production in electron-positron annihilation.

2For our tests it was sufficient to use 50 working digits.
3Whenever a soft-collinear limit was probed 𝜆 was used to characterize energy of the soft-candidate parton, which

was decreased by an order of magnitude, while the square-root of 𝜆 was used to characterize collinearity of the collinear
pair to maintain proper scaling between these limits.
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Figure 1: S76𝑅𝑅 and C765𝑅𝑅 subtractions compared to SME in their limits, respectively.
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Figure 2: The S76C765𝑅𝑅 compared to the corresponding triple-collinear (left) and double-soft (right) term
taking the appropriate limits.

and implementation their ratios should tend to one as we go deeper and deeper into the limit,

S76𝑅𝑅

𝑅𝑅

6 ,7→0−−−−−→ 1 ,
C765𝑅𝑅

𝑅𝑅

5 | |6 | |7
−−−−−→ 1 . (27)

The corresponding convergent set of ratios are depicted on Fig. 1 .
There is an overlap between the double-soft and triple-collinear subtractions. If the overlap

term is well defined it should cancel with the double-soft(triple-collinear) term in the triple-
collinear(double-soft) limits,

S76C765𝑅𝑅

C765𝑅𝑅

6 ,7→0−−−−−→ 1 ,
S76C765𝑅𝑅

S76𝑅𝑅

5 | |6 | |7
−−−−−→ 1 . (28)

The corresponding set of points can be seen on Fig. 2 .
To illustrate the cancellation of spurious singularities we consider a pair of single- and double-

soft subtraction terms. To avoid spurious singularities a strongly-ordered soft term has to be defined
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Figure 3: Example convergence for a spurious singularity cancellation involving soft limits.
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Figure 4: Comparison of the total set of subtractions to the SME in two physical limits: single-soft (left)
and double-collinear (right).

with the following conditions:

S7S76𝑅𝑅

S76𝑅𝑅

7→0−−−→ −1 ,
S7S76𝑅𝑅

S7𝑅𝑅

6 ,7→0−−−−−→ −1 . (29)

The corresponding plots can be seen on Fig. 3 . Notice that the ratio approaches minus one in case
of spurious singularity cancellations. In our case the corresponding minus signs are defined into the
corresponding terms of 𝐾 (12) which makes it easier in the development phase to group subtraction
terms in deep limits to observe cancellations when happening in groups.

Finally, we demonstrate the correctness of the complete set of subtractions by considering
a physical limit and comparing to the double-real SME. For illustrative purposes we consider a
single-soft and a double-collinear limit:

𝐾 (1) + 𝐾 (2) + 𝐾 (12)

𝑅𝑅
=
𝐾 full

𝑅𝑅

7→0−−−→ 1 ,
𝐾 (1) + 𝐾 (2) + 𝐾 (12)

𝑅𝑅
=
𝐾 full

𝑅𝑅

4 | |5 ,6 | |7
−−−−−−−→ 1 . (30)

The corresponding plots can be seen on Fig. 4 .
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4. Conclusions

We presented the first numerical implementation of the Local Analytical Subtraction Scheme by
illustrating those numerical checks we conducted in order to ensure our numerical implementation
is capable of regularizing all those kinematic singularities that can emerge in a computation of
a QCD cross section in electron-positron collisions at NNLO accuracy. In our numerical studies
we also investigated and proved that subtractions are set up such that they do not only cancel
kinematic singularities of the radiation SMEs but also the spurious singularities being inherently
present at NNLO. To perform these studies we created an arbitrary-precision numerical framework
built around the arbitrary-precision package written in Fortran 90 called MPFUN2020. Our results
convinced us that subtractions are coded correctly and our next step towards the computation of a
complete QCD prediction at NNLO accuracy for distributions for three-jet production in electron-
positron annihilation is to start a numerical integration of these terms with appropriate dynamics in
a parton-level Monte-Carlo code.
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