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1. Introduction

The construction of locally finite amplitudes of refs. [3–5] calls for an efficient method to
compute loop integrals numerically in momentum space. A viable approach is based on the
subtraction of threshold singularities, which originated in [6] and was later extended in [1] for the
intersecting singularity structures. In conjunction with the local infrared (IR) and ultraviolet (UV)
subtraction of [4], threshold subtraction has proven to be effective for the computation of 𝑁 𝑓 -
contributions to the virtual correction at NNLO for the production of massive electroweak vector
bosons at the LHC [2]. In this contribution, we apply the threshold subtraction method to scalar two-
and three-loop integrals: the four-point ladder diagrams with massive external legs and massless
internal propagators. These integrals are finite in IR and UV limits and can be evaluated directly in
𝑑 = 4 spacetime dimensions. Furthermore, these integrals allow us to test the threshold subtraction
method for the first time for two- and three-loop type thresholds without introducing the added
complexity of multi-channelling, as we will show below. These calculations pave the way for future
applications, such as extending the work in ref. [2] to the complete virtual cross section at NNLO.

2. Method

We consider the double- and triple-box integrals

𝐺 (2) =

∫
d4𝑘1

(2𝜋)4
d4𝑘2

(2𝜋)4
1

𝐴1 · · · 𝐴7
, 𝐺 (2) =

∫
d4𝑘1

(2𝜋)4
d4𝑘2

(2𝜋)4
d4𝑘3

(2𝜋)4
1

𝐵1 · · · 𝐵10
, (1)

with

𝐴1 = 𝐵1 = 𝑘2
1 , 𝐴2 = 𝐵2 = (𝑘1 − 𝑝1 − 𝑝2)2 , (2)

𝐴3 = 𝐵3 = (𝑘1 − 𝑝2)2 , 𝐴4 = 𝐵4 = (𝑘1 − 𝑘2)2 , (3)

𝐴5 = 𝐵5 = 𝑘2
2 , 𝐴6 = 𝐵6 = (𝑘2 − 𝑝1 − 𝑝2)2 , (4)

𝐴7 = (𝑘2 − 𝑞1)2 , 𝐵7 = (𝑘2 − 𝑘3)2 , 𝐵8 = 𝑘2
3 , (5)

𝐵9 = (𝑘3 − 𝑞1)2 , 𝐵10 = (𝑘3 − 𝑝1 − 𝑝2)2 , (6)

where the i𝜖 causal prescription is left implicit and 𝑝1 + 𝑝2 = 𝑞1 + 𝑞2, 𝑝2
𝑖
= 𝑚2

𝑖
≠ 0, 𝑞2

𝑖
= 𝑚2

𝑖
≠ 0 .

Despite being IR- and UV-finite, these integrals remain difficult to evaluate using Monte Carlo
integration. The i𝜖 prescription, which formally shifts the on-shell poles of the propagators away
from the contour of integration, is impractical for numerical integration. We summarise how
this issue is resolved, following refs. [1, 2]. In section 2.1, we analytically integrate the energy
component of the loop momenta, in order to expose the threshold singular surfaces. In section 2.2,
we regularise the corresponding threshold singularities.

2.1 Integration of loop energies

Time-ordered perturbation theory (TOPT) [7–10], loop-tree duality (LTD) [11–16], causal
LTD [17–25], the cross-free family (CFF) representation [26, 27], and partially time-ordered per-
turbation theory (PTOPT) [28] all provide a systematic way of performing the energy integration,
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but they yield different algebraic representations (of the same expression). Their derivation exploits
that each (quadratic) propagator denominator

𝐷𝑖 = 𝑞2
𝑖 − 𝑚2

𝑖 + i𝜖 = (𝑞0
𝑖 − 𝐸𝑖) (𝑞0

𝑖 + 𝐸𝑖) (7)

has two poles at positive and negative on-shell energies 𝑞0
𝑖
= ±𝐸𝑖 . After the integration over the

energy component of the loop momenta, the integrand is given by∫ ©­«
𝑛∏
𝑗=1

d𝑘0
𝑗

(2𝜋)
ª®¬G (𝑛) ({𝑘𝑖}) = (−i)𝑛 I (𝑛)

(
{®𝑘𝑖}

)
, (8)

where G (𝑛) denotes the integrand of 𝐺 (𝑛) . I (𝑛) is a rational function of the on-shell energies,
whose integral over the spatial loop momentum space we denote as 𝐼 (𝑛) . The remaining poles are
precisely the threshold singularities that are addressed in the next section.

We will implement our expressions as in ref. [2]. Since CFF, unlike LTD, has no spurious
singularities, it is more numerically stable and it is therefore our preferred representation for
numerical evaluation. On the other hand, the LTD representation is more compact and we use it for
the residues needed for the threshold counterterms presented below in eq. (17). We generate these
expressions using Form [29–32] and Python, as described in [2].

2.2 Subtraction of threshold singularities

For our scalar integrals, we find the threshold singularities listed as Cutkosky cuts [33] in
figs. 1 and 2. Alternatively, they can be determined from the denominator structure in the CFF or
LTD expression. The threshold singularities illustrated in fig. 1 are

𝑡1 = 𝐸2 + 𝐸1 − 𝑝0
2 − 𝑝0

1 , 𝑡2 = 𝐸6 + 𝐸5 − 𝑝0
2 − 𝑝0

1 , (9)

𝑡3 = 𝐸2 + 𝐸4 + 𝐸5 − 𝑝0
2 − 𝑝0

1 , 𝑡4 = 𝐸6 + 𝐸4 + 𝐸1 − 𝑝0
2 − 𝑝0

1 , (10)

𝑡5 = 𝐸2 + 𝐸3 − 𝑝0
1 , 𝑡6 = 𝐸6 + 𝐸4 + 𝐸3 − 𝑝0

1 , (11)

𝑡7 = 𝐸3 + 𝐸1 − 𝑝0
2 , 𝑡8 = 𝐸4 + 𝐸3 + 𝐸5 − 𝑝0

2 , (12)

𝑡9 = 𝐸7 + 𝐸5 − 𝑞0
1 , 𝑡10 = 𝐸7 + 𝐸4 + 𝐸1 − 𝑞0

1 , (13)

𝑡11 = 𝐸6 + 𝐸7 + 𝑞0
1 − 𝑝0

2 − 𝑝0
1 , 𝑡12 = 𝐸2 + 𝐸7 + 𝐸4 + 𝑞0

1 − 𝑝0
2 − 𝑝0

1 , (14)

𝑝1 𝑞2

𝑝2 𝑞1

𝑘1 − 𝑝1 𝑘2 − 𝑞1

𝑘1 − 𝑝1 − 𝑝2

𝑘1 𝑘2

𝑘2 − 𝑝1 − 𝑝2

𝑘1 − 𝑘2

Figure 1: Cutkosky cuts of the double-box diagram with massive external legs.
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where

𝐸1 = | ®𝑘1 | , 𝐸5 = | ®𝑘2 | , 𝐸3 = | ®𝑘1 − ®𝑝1 | , 𝐸4 = | ®𝑘1 − ®𝑘2 | ,
𝐸2 = | ®𝑘1 − ®𝑝1 − ®𝑝2 | , 𝐸6 = | ®𝑘2 − ®𝑝1 − ®𝑝2 | , 𝐸7 = | ®𝑘2 − ®𝑞1 | .

Analogously for I (3) , we find the twenty-one threshold singularities represented in fig. 2, which we
omit listing explicitly for brevity.

We refer to a threshold that contains a sum of 𝑛 + 1 on-shell energies 𝐸𝑖 as an 𝑛-loop type
threshold. The real solutions of 𝑡 = 0, where 𝑡 is one of the above threshold singularities, correspond
to poles of the integrand inside the integration domain. They exist because 𝑝2 > 0, where 𝑝 is the
momentum flowing through the cut. If 𝑝2 = 0 , they would describe a pinch singularity, which we
do not have in our examples.

Following refs. [1, 2], we will parameterise the threshold singularities 𝑡 as 𝑟 = 𝑟𝑡 (k̂), where 𝑟
is the radial variable of hyperspherical coordinates ( ®𝑘1, . . . , ®𝑘𝑛) = ®k = 𝑟k̂. We will remove these
poles at 𝑟 = 𝑟𝑡 (k̂) using local counterterms. This approach allows us to determine the dispersive and
absorptive parts of 𝐺 (𝑛) through separate Monte Carlo integrations. More details on the hypercube
mapping in the Monte Carlo integration can be found in ref. [2].

We can express the dispersive part of 𝐼 (𝑛) as an integral over 𝑛 spatial loop momenta,

Re 𝐼 (𝑛) =
∫

d3𝑛®k
(2𝜋)3𝑛

(
I (𝑛) (®k) −

∑︁
𝑡∈𝑇

C𝑡 [I (𝑛) ] (®k)
)
, (15)

and the absorptive part as

2 Im 𝐼 (𝑛) =

∫
d3𝑛−1k̂
(2𝜋)3𝑛−1

∑︁
𝑡∈𝑇

𝑅𝑡 [I (𝑛) ] (k̂) , (16)

where 𝑇 denotes the set of all threshold singularities. The threshold counterterm C𝑡 is defined as

C𝑡

[
I (𝑛) (𝑟k̂)

]
=

𝑅𝑡 [I (𝑛) ]
𝑟3𝑛−1

(
𝜒(𝑟 − 𝑟𝑡 )
𝑟 − 𝑟𝑡 − i𝜖

+ 𝜒(−𝑟 − 𝑟𝑡 )
−𝑟 − 𝑟𝑡 − i𝜖

)
, (17)

where we choose

𝜒(𝑥) = exp

[
−

(
𝑥

𝐸CM

)2
]
Θ

[
(3𝐸CM)2 − 𝑥2] , (18)

𝑝1 𝑞2

𝑝2 𝑞1

𝑘1 − 𝑝1

𝑘1 − 𝑝1 − 𝑝2

𝑘1 𝑘2

𝑘2 − 𝑝1 − 𝑝2

𝑘1 − 𝑘2 𝑘2 − 𝑘3

𝑘3

𝑘3 − 𝑞1

𝑘3 − 𝑝1 − 𝑝2

Figure 2: Cutkosky cuts of the triple-box diagram with massive external legs.

4



P
o
S
(
L
L
2
0
2
4
)
0
7
8

Numerical integration of the double- and triple-box integrals using threshold subtraction Matilde Vicini

although any function 𝜒 would suffice to regulate the UV behaviour of C𝑡 , provided that 𝜒 satisfies
𝜒(0) = 1 and 𝜒(𝑥) → 0 for 𝑥 → ±∞ and is symmetric around the origin. With these requirements,
the integrated counterterm only contributes to the absorptive part of the integral since the Cauchy
principal value vanishes by construction, i.e.∫ ∞

0
d𝑟 𝑟3𝑛−1C𝑡

[
I (𝑛) (𝑟k̂)

]
= i𝜋𝑅𝑡 [I (𝑛) ] (k̂) . (19)

The residue 𝑅𝑡 reads

𝑅𝑡 [I (𝑛) (®k)] = Res
[
𝑟3𝑛−1I (𝑛) (𝑟k̂), 𝑟 = 𝑟𝑡 (k̂)

]
=

𝑟3𝑛−1

d𝑡
d𝑟

lim
𝑡→0

(
𝑡I (𝑛)

)�����
𝑟=𝑟𝑡 (k̂)

, (20)

where the threshold parametrisation 𝑟𝑡 (k̂) is defined implicitly through the on-shell condition

𝑡 (𝑟𝑡 (k̂)k̂) = 0 , where 𝑟𝑡 (k̂) > 0 . (21)

𝑟𝑡 (k̂) is the location of the threshold singularity along the direction k̂. For the one-loop type
thresholds, the on-shell condition of eq. (21) can be solved analytically in the radial variable as
explained in ref. [1]. In general, the solution to the on-shell condition of eq. (21) for higher-loop type
thresholds can always be found numerically, for example using Newton’s or Brent’s method [34].
However, in our examples and in the centre-of-mass (COM) frame, all threshold singularities
collapse to a quadratic equation in 𝑟, which can easily be solved analytically at fixed k̂.

Each threshold singularity describes the locus of points such that 𝑡 (®k) = 0, hence it defines
a hyper-surface in (spatial) loop momentum space. The above equations are only guaranteed to
be correct and the i𝜖 causal prescription can be safely removed if the origin ®O of the spherical
coordinate system lies inside all threshold surfaces, i.e. 𝑡 ( ®O) < 0 for all 𝑡 ∈ 𝑇 . Otherwise, the
resulting parametrisation would introduce integrable singularities at the tangents of the threshold
surfaces, where d𝑡

d𝑟 (k̂) = 0, in the residues of eq. (20). More importantly, if the origin lies inside
all the threshold surfaces, it is assured that the counterterms are also correct where the integrand
develops higher-order poles, namely at intersections of thresholds surfaces. At these intersections,
the corresponding residues will also have poles, which, however, locally cancel among each other,
as shown in ref. [1].

If no point inside all intersecting threshold surfaces can be found, one can employ a multi-
channelling procedure, as in ref. [2]. Fortunately, in our examples, the point ®0 lies inside all
threshold surfaces simultaneously. We can therefore use the above equations directly without the
need for multi-channelling for the double- and triple-box in the COM frame, by setting ®O = ®0.

We remark that eq. (16) is a local manifestation of the Cutkosky rule [33], in the same way as
was shown for its one-loop analogue in ref. [1].

3. Results

Our results are presented in table 1. We use the Vegas adaptive Monte-Carlo algorithm
[35, 36] of the Cuba library [37] for multidimensional numerical integration. The solution to
the on-shell condition, 𝑟𝑡 (k̂) , upon which the threshold counterterms (and residues) depend, is
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found analytically for all one-loop type thresholds [1]. The remaining on-shell conditions we solve
numerically using Brent’s method implemented in Rust [38], since we have not yet implemented
higher-loop type analytic solutions that are valid only in specific reference frames. However, with
the analytic solution, we expect an improvement in runtime and stability.

Diag Kin Phase 𝑁𝑝 [106] 𝑡/𝑝 [𝜇s] Exp. Reference Result Δ [%]

2L4P

K1
Re 108 0.3 10-6 -1.0841 -1.0829 +- 0.0054 0.495

Im 11 0.1 10-6 2.8682 2.8651 +- 0.0071 0.249

K2
Re 1083 0.3 10-8 3.1105 3.1091 +- 0.0154 0.495

Im 14 0.1 10-8 9.5389 9.5746 +- 0.0422 0.441

K3
Re 746 0.3 10-10 1.7037 1.7142 +- 0.0085 0.496

Im 13 0.1 10-10 4.5650 4.5620 +- 0.0210 0.461

3L4P

K1
Re 982 4 10-9 -2.4242 -2.4042 +- 0.0204 0.849

Im 10008 6 10-9 -3.4003 -3.4037 +- 0.0298 0.874

K2
Re 3763 5 10-11 -5.3031 -5.2649 +- 0.0447 0.848

Im 10008 6 10-11 -1.0780 -1.1501 +- 0.1433 12.459

K3
Re 4303 7 10-14 -4.4705 -4.4283 +- 0.0376 0.849

Im 10008 5 10-15 -6.6383 -6.3589 +- 1.3079 20.568

Table 1: Results for numerical integration of double- and triple-box integrals, respectively denoted as 2L4P,
3L4P, at the respective kinematical points listed in table 2 , with reference results from ref. [39]. 𝑁𝑝 denotes
the number of Monte Carlo evaluations, 𝑡/𝑝 represents the average time per evaluation, Exp. indicates the
scale by which the result is multiplied, and Δ signifies the relative uncertainty of the result. The Vegas
parameters nstart and nincrease are set to 106 and 105 respectively, nmax is set to 1010, epsrel to
0.085 . The numerical integrations were performed on a standard computer with an AMD Ryzen 9 5950X
16-Core Processor CPU, on 15 cores.

The reference results in table 1 are from the analytic computation of ref. [39]. The example
kinematic configurations K1, K2, and K3 are taken from [40], where these integrals were evaluated
using contour defromation. For completeness, they are listed in table 2. The three-loop ladder
diagram’s dispersive part evaluation requires the rescue of unstable samples in quadruple precision.
For this diagram, we checked the stability of the integrand evaluation using a rotation test, as
described in [40]. This test involves comparing the integrand evaluation at the original kinematic
configuration and at a rotated one. If a specified minimum number of digits match, the evaluation is
deemed stable. Additionally, the rotation test can be repeated in quadruple precision to potentially
recover an unstable sample. If the evaluation remains unstable, it is set to zero. The number of
unstable and rescued samples is tracked, and the count of unstable samples should not exceed a
certain bound to avoid distorting the Monte Carlo estimate. It remains to be investigated why
the errors are large in the dispersive integral of 3L4P for kinematic configurations K2 and K3 , a
curiosity that was already observed in ref. [40]. It may be attributed to their larger scale hierarchy
with respect to K1. Potentially the method can be adjusted to tackle these kinematic points more
efficiently.
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K1

𝑝
𝜇

1 = (2.50925, 0.0, 0.0, 2.30138)

𝑝
𝜇

2 = (2.55075, 0.0, 0.0, -2.30138)

𝑞
𝜇

1 = (2.5053, 0.487891, 1.95655, -0.877716)

K2

𝑝
𝜇

1 = (6.0, 0.0, 0.0, 5.91607978309962)

𝑝
𝜇

2 = (6.0, 0.0, 0.0, -5.91607978309962)

𝑞
𝜇

1 = (6.0, 1.3124738333059, 5.26330888118183, -2.36114210884473)

K3

𝑝
𝜇

1 = (14.95, 0.0, 0.0, 14.9165176901313)

𝑝
𝜇

2 = (15.05, 0.0, 0.0, -14.9165176901313)

𝑞
𝜇

1 = (14.8833333333333, 3.23407440276709, 12.9693500125724, -5.81810399699641)

Table 2: Kinematic points K1, K2, K3 used for the results in table 1. From momentum conservation
𝑞2 = 𝑝1 + 𝑝2 − 𝑞1.

4. Conclusion

We demonstrated the threshold subtraction method in difficult two- and three-loop finite scalar
integrals, where a large number of thresholds are present. In the future, for the extension of ref. [2]
to the full NNLO virtual cross section, we will encounter similar two-loop diagrams. However,
since these diagrams will have massless initial particles, some threshold singularities will be traded
for pinch singularities, which will instead be subtracted by the local infrared counterterms of ref. [4].
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