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1. Introduction

An important ingredient in the predictive power of quantum chromodynamics (QCD) is that
it admits perturbation theory, that is it allows for the systematic increase of precision in exchange
for computational cost. For inclusive calculations, the cost is in the integration over unobserved
quantities in scattering processes. This can be the explicitly unobservable loop momenta in virtual
contributions, or the individually unobserved radiative momenta in real contributions, which can
be interpreted as to allow for a more accurate description of jets. Given a computer program for
the calculation of scattering processes at a certain precision level in perturbative QCD, it seems
at first glance to be the extra required loops that prevent an easy increase of precision. Adding an
extra parton to the final state and integrating over its momentum seems easy. However, this integral
is plagued with divergences that, while formally cancelling against similar divergences in the loop
contributions to a large degree, prevent a straightforward calculation. The subtraction method is
an approach to deal with this complication [1–12]. In particular, it uses the resources available for
calculations at a given order, the ability to calculate the necessary scattering amplitudes, to calculate
a higher order real contribution.

For hadron scattering, the cancellation of divergences is incomplete, and the leftovers need to be
absorbed into universal parton density functions (PDFs). The possibility of a consistent procedure
to establish this is an essential aspect of collinear factorization, in which the initial-state partons of
the hard scattering process are collinear to the scattering hadrons. In 𝑘𝑇 -factorization, the picture of
collinear initial-state partons is relaxed and the initial-state partons also carry transverse momentum
components. While next-to-leading order (NLO) calculations within collinear factorization have
been automated, calculations within 𝑘𝑇 -factorization are not near that stage. Any NLO calculation
must include a real radiation contribution that corresponds to taking the LO process, and integrating
over an extra parton added to the final state. It may be that in a certain factorization approach a certain
contribution must be avoided/added/subtracted, but the calculation of the real radiation contribution
as described in the previous sentence must be under control. In particular, all divergences must be
identified.

Here, we describe the essential points of the subtraction scheme introduced in [13] to achieve
this for hybrid 𝑘𝑇 -factorization, for which one initial-state parton has transverse components, while
the other is collinear to the hadron it is associated with. It is similar to existing schemes for collinear
factorization in that it employs known singular limits of matrix elements to build the various
subtraction terms. However, since all four initial-state momentum components are non-vanishing
in hybrid 𝑘𝑇 -factorization, there is the possibility to subtract the momentum recoil associated with
the subtraction terms from the initial-state momenta.

2. Exposition

In hybrid 𝑘𝑇 -factorization, one of the partonic initial states, here denoted 𝜒, has transverse
momentum components, while the other, denoted 𝜒 does not. Their momenta are

𝑘
𝜇
𝜒 = 𝑥𝑃𝜇 + 𝑘

𝜇
⊥ , 𝑃𝜇 = (𝐸, 0, 0, 𝐸) , 𝑘

𝜇
⊥ = (0, 𝑘⊥,1, 𝑘⊥,2, 0) , (1)

𝑘
𝜇

𝜒
= 𝑥�̄�𝜇 , �̄�𝜇 = (�̄� , 0, 0,−�̄�) , (2)
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where 𝑃, �̄� are the momenta of the scattering hadrons. We write the Born-level formula for the
cross section as

𝜎B =
1
S𝑛

∫
[𝑑𝑄]

∫
𝑑Φ

(
𝑄; {𝑝}𝑛

)
L

(
𝑄; {𝑝}𝑛

) ��M ��2 (𝑄; {𝑝}𝑛
)
𝐽B

(
{𝑝}𝑛

)
(3)

where [𝑑𝑄] refers to the integration over initial-state variables∫
[𝑑𝑄] =

∫ 1

0
𝑑𝑥

∫ 1

0
𝑑𝑥

∫
𝑑2𝑘⊥ , 𝑄𝜇 = 𝑘

𝜇
𝜒 + 𝑘

𝜇

𝜒
, (4)

and L
(
𝑄; {𝑝}𝑛

)
includes the 𝑘⊥-dependent PDF, the collinear PDF, and flux factor:

L
(
𝑄; {𝑝}𝑛

)
=

𝐹𝜒

(
𝑥, 𝑘⊥, 𝜇𝐹 ({𝑝}𝑛)

)
𝑓𝜒

(
𝑥, 𝜇𝐹 ({𝑝}𝑛)

)
8𝑥𝑥𝐸�̄�

. (5)

This function implicitly depends on the final-state momenta {𝑝}𝑛 via the factorization scale. The
other components of the Born formula are the differential final-state phase space

𝑑Φ
(
𝑄; {𝑝}𝑛

)
=

(
𝑛∏
𝑙=1

𝑑4𝑝𝑙

(2𝜋)3 𝛿+(𝑝
2
𝑙 − 𝑚2

𝑙 )
)

1
(2𝜋)4 𝛿

(
𝑄 −

𝑛∑︁
𝑙=1

𝑝𝑙

)
, (6)

and the tree-level matrix element
��M ��2 (𝑄; {𝑝}𝑛

)
. It involves a space-like gluon and can be calculated

using Lipatov’s effective action [14, 15], or the auxiliary parton method [16] as is done in the program
KaTie [17]. The matrix element does not include symmetry factors and averaging factors, and those
are captured by S𝑛. Finally 𝐽B

(
{𝑝}𝑛

)
denotes the jet function that vanishes if it constructs fewer

jets than there are final-state partons, and is assumed to include 𝑝𝑇 and rapidity cuts for the jets.
The real radiation integral

𝜎R(𝜖) =
1

S𝑛+1

∫
[𝑑𝑄]

∫
𝑑Φ𝜖

(
𝑄; {𝑝}𝑛+1

)
L

(
𝑄; {𝑝}𝑛+1)

) ��M ��2 (𝑄; {𝑝}𝑛+1
)
𝐽R

(
{𝑝}𝑛+1

)
(7)

still involves tree-level matrix elements, but has one more final-state parton, and has a jet function
𝐽R

(
{𝑝}𝑛+1

)
that allows for one jet fewer than the number of final-state partons. This integral is

divergent because, contrary to the Born case, now the jet function allows one momentum to become
arbitrarily soft, and a pair of momenta to become arbitrarily collinear. The divergences must
be treated within dimensional regularization to match the divergences of the virtual contribution
stemming from the one-loop amplitude. This means that the coefficients 𝜎 (𝑖)

R in

𝜎R(𝜖) =
1
𝜖2𝜎

(−2)
R + 1

𝜖
𝜎

(−1)
R + 𝜎

(0)
R + O(𝜖) . (8)

must be determined, where 𝜖 = (dim − 4)/2 → 0 is the regularizing parameter. In order to achieve
this, the divergent behavior of the real radiation integral is cured with subtraction terms, such that
this subtracted real integral 𝜎fin

R can be performed numerically. The subtraction terms must be
such that, when integrated on their own, assume a form that manifestly includes the divergent terms
cancelling against the virtual divergences, so their sum 𝜎div

R (𝜖) has the same divergent coefficients
as 𝜎R(𝜖),

𝜎div
R (𝜖) = 1

𝜖2𝜎
(−2)
R + 1

𝜖
𝜎

(−1)
R + 𝜎

div, (0)
R + O(𝜖) , (9)
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while the final desired finite quantity is given by

𝜎
(0)
R = 𝜎

div, (0)
R + 𝜎fin

R . (10)

In practice this means that it must be possible for each subtraction term to “integrate the radiation
out” in order to arrive at expressions that involve only Born-level phase space integrals, just like
the divergent part of the virtual contribution. Different subtraction schemes will produce different
values for 𝜎div, (0)

R and 𝜎fin
R individually, but their sum must be the same. In particular, one can

introduce adjustable parameters the individual quantities depend on, and independence of the sum
can serve as a check for the correctness of the implementation of the subtraction scheme.

2.1 Definition of the subtraction terms

The real contribution involves a momentum set {𝑝}𝑛+1 with one more final-state parton than
the Born contribution, and we need to establish notation for the relation between the two. We write

{𝑝} 𝑟/𝑛 is obtained from {𝑝}𝑛+1 by removing momentum 𝑝𝑟 , (11)

{𝑝} 𝑟/;𝑖
𝑛 is obtained by additionally replacing 𝑝𝑖 with (1 + 𝑧𝑟𝑖)𝑝𝑖 , 𝑧𝑟𝑖 = 𝐸𝑟/𝐸𝑖 (12)

where 𝐸𝑖 is the energy of momentum 𝑝𝑖 , and where we assume the momenta to be light-like. The
limits that the jet function allows and represent singularities for the radiative matrix element are

𝐽R
(
{𝑝}𝑛+1

) 𝑝𝑟→soft ⇔ 𝐸𝑟→0
−−−−−−−−−−−−→ 𝐽B

(
{𝑝} 𝑟/𝑛

)
, (13)

𝐽R
(
{𝑝}𝑛+1

) 𝑝𝑟 ∥ 𝑝𝑖 ⇔ ®𝑛𝑟−®𝑛𝑖→®0
−−−−−−−−−−−−→ 𝐽B

(
{𝑝} 𝑟/;𝑖

𝑛

)
, (14)

𝐽R
(
{𝑝}𝑛+1

) 𝑝𝑟 ∥𝑃,�̄�−−−−−−−−−−−−→ 𝐽B
(
{𝑝} 𝑟/𝑛

)
. (15)

We define the finite subtracted-real integral 𝜎fin
R as

𝜎fin
R =

1
S𝑛+1

∫
[𝑑𝑄]

∫
𝑑Φ

(
𝑄; {𝑝}𝑛+1

) {
L

(
𝑄; {𝑝}𝑛+1)

) ��M ��2 (𝑄; {𝑝}𝑛+1
)
𝐽R

(
{𝑝}𝑛+1

)
−

∑︁
𝑟

Subt𝑟
(
𝑄; {𝑝}𝑛+1

)}
, (16)

where the 𝑟-sum is over all final-state partons, and where Subt𝑟
(
𝑄; {𝑝}𝑛+1

)
is given by∑︁

𝑖

L
(
𝑄 − 𝑝𝑟 + 𝑧𝑟𝑖𝑝𝑖; {𝑝} 𝑟/;𝑖

𝑛

)
RF
𝑖,𝑟 (𝑝𝑟 ) ⊗ AF

𝑖,𝑟

(
𝑄 − 𝑝𝑟 + 𝑧𝑟𝑖𝑝𝑖; {𝑝} 𝑟/;𝑖

𝑛

)
𝐽B

(
{𝑝} 𝑟/;𝑖

𝑛

)
+

∑︁
𝑎∈{𝜒,𝜒}

L
(
𝑄 − 𝑝𝑟 ; {𝑝} 𝑟/𝑛

)
RI,soft

𝑎 (𝑝𝑟 ) ⊗ AI,soft
𝑎

(
𝑄 − 𝑝𝑟 ; {𝑝} 𝑟/𝑛

)
𝐽B

(
{𝑝} 𝑟/𝑛

)
+

∑︁
𝑎∈{𝜒,𝜒}

L
(
𝑄 − 𝑝𝑟 ; {𝑝} 𝑟/𝑛

)
RI,soco

𝑎 (𝑝𝑟 ) ⊗ AI,soco
𝑎

(
𝑄 − 𝑝𝑟 ; {𝑝} 𝑟/𝑛

)
𝐽B

(
{𝑝} 𝑟/𝑛

)
+ L

(
𝑄 − 𝑥𝑟 �̄� − 𝑝⊥𝑟 ; {𝑝} 𝑟/𝑛

)
RI,col

𝜒,𝑟 (𝑝𝑟 ) ⊗ AI,col
𝜒,𝑟

(
𝑄 − 𝑝𝑟 ; {𝑝} 𝑟/𝑛

)
𝐽B

(
{𝑝} 𝑟/𝑛

)
+ L

(
𝑄 − 𝑥𝑟𝑃 − 𝑝⊥𝑟 ; {𝑝} 𝑟/𝑛

)
RI,col

𝜒,𝑟
(𝑝𝑟 ) ⊗ AI,col

𝜒,𝑟

(
𝑄 − 𝑝𝑟 ; {𝑝} 𝑟/𝑛

)
𝐽B

(
{𝑝} 𝑟/𝑛

)
(17)
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where also the 𝑖-sum is over all final-state partons with RF
𝑟𝑟 (𝑝𝑟 ) ≡ 0. The subtraction terms are

constructed analogously to [3]. The various combinations R ⊗ A are based on the well-known
singular limits of the matrix element

��M ��2 (𝑄; {𝑝}𝑛+1
)
, where R represents the singular behavior

as function of the radiative momentum 𝑝𝑟 , where A represents a spin-or color-correlated matrix
element for the process with the radiative parton removed, and ⊗ abbreviates the possible contraction
involved with those correlations.

The main difference with [3] lies in the treatment of the momentum recoil. For the “initial-
state” subtraction terms, labelled I, the radiative momentum removed from the final state is simply
subtracted from the initial state momenta to ensure momentum conservation: the components

𝑥𝑟 =
𝑝𝑟 ·𝑃
𝑃 · �̄�

, 𝑥𝑟 =
𝑝𝑟 · �̄�
𝑃 · �̄�

, 𝑝
𝜇
𝑟,⊥ = 𝑝

𝜇
𝑟 − 𝑥𝑟𝑃

𝜇 − 𝑥𝑟 �̄�
𝜇 (18)

are subtracted from 𝑥, 𝑥, 𝑘𝜇⊥ respectively. For the “final-state” terms labelled with F, the remnant
recoil 𝑝𝜇

𝑟 + 𝑝
𝜇

𝑖
− (1 + 𝑧𝑟𝑖)𝑝𝜇

𝑖
= 𝑝

𝜇
𝑟 − 𝑧𝑟𝑖𝑝

𝜇

𝑖
is subtracted instead. These final-state terms include

the collinear terms, soft terms, and soft-collinear counter terms, just like listed explicitly for the
initial-state terms. To avoid double counting in the sums over radiation and radiators, a selector
function 𝜃 (𝐸𝑖 > 𝐸𝑟 ) is included for the collinear terms, and singular factors from the soft limits are
split up following

(𝑝𝑖 ·𝑝 𝑗)
(𝑝𝑖 ·𝑝𝑟 ) (𝑝𝑟 ·𝑝 𝑗)

=
(𝑝𝑖 ·𝑝 𝑗)

(𝑝𝑖 ·𝑝𝑟 ) [(𝑝𝑟 ·𝑝 𝑗) + (𝑝𝑖 ·𝑝𝑟 )]
+

(𝑝𝑖 ·𝑝 𝑗)
(𝑝 𝑗 ·𝑝𝑟 ) [(𝑝𝑟 ·𝑝 𝑗) + (𝑝𝑖 ·𝑝𝑟 )]

. (19)

Another difference with [3], and most other subtraction methods, is that for those the equivalent
of the L function is not touched, whereas here the subtraction of the recoil from the initial-state
momenta also happens inside the L function. This is allowed, as long as what is subtracted
vanishes at the singular limit. For the initial-state collinear terms, this cannot be the whole radiative
momentum 𝑝𝑟 itself, since it becomes 𝑥𝑟𝑃 or 𝑥𝑟 �̄� at either limit. Only the vanishing components
are subtracted in the L function.

Finally, we mention that all terms are restricted to regions of phase space where they actually
matter. The soft and soft-collinear subtraction terms are non-vanishing only if

𝐸𝑟 < 𝐸0 (20)

for some fixed small energy 𝐸0, and the collinear and soft-collinear terms are non-vanishing only if

∠( ®𝑝𝑟 , ®𝑝𝑖) < 𝜑0 (21)

for some fixed small angle 𝜑0. The individual contribution 𝜎div
R (𝜖) and 𝜎fin

R depend on the value
of these parameters, but their sum should not. Consequently, the poles in 𝜖 in 𝜎div

R (𝜖) should
not depend on them, only the finite pieces. As mentioned before, these requirements constitute a
powerful check on the correctness of the subtraction method.

We do not present further details about the subtraction terms, and they can be found in [13]. We
only mention that, despite one initial-state gluon is not light-like, there is still a collinear singularity
associated with it when the radiation becomes collinear to the momentum 𝑃, and a subtraction term
with splitting function

P𝜒 (𝑧) =
2𝑁c

𝑧(1 − 𝑧) . (22)

has to be included to cure it.

5
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2.2 Integration of the subtraction terms

Thanks to the momentum recoil being subtracted both from the initial-state momenta in the
matrix elements and in the L-function, the integration momentum 𝑄 can simply be shifted for the
calculation of the integrated subtraction terms. After some more manipulations, one finds

𝜎div
R (𝜖) = 1

S𝑛+1

∑︁
𝑟

∫
[𝑑𝑄]

∫
𝑑Φ

(
𝑄; {𝑝} 𝑟/𝑛

)
L

(
𝑄; {𝑝} 𝑟/𝑛

)
𝐽B

(
{𝑝} 𝑟/𝑛

)
(23)

×
{∑︁

𝑖

IF
𝑖𝑟

(
𝜖, 𝑄, {𝑝} 𝑟/𝑛

)
⊗ AF

𝑖𝑟

(
𝑄; {𝑝} 𝑟/𝑛

)
+

∑︁
𝑎∈{𝜒,𝜒}

I 𝐼
𝑎𝑟

(
𝜖, 𝑄, {𝑝} 𝑟/𝑛

)
⊗ A 𝐼

𝑎𝑟

(
𝑄; {𝑝} 𝑟/𝑛

)}
,

where
I 𝐼
𝑎𝑟 ⊗ A 𝐼

𝑎𝑟 = II,col
𝑎𝑟 ⊗ AI,col

𝑎𝑟 + II,soft
𝑎 ⊗ AI,soft

𝑎 + II,soco
𝑎 ⊗ AI,soco

𝑎 , (24)

with

IF
𝑖𝑟

(
𝜖, 𝑄, {𝑝} 𝑟/𝑛

)
=

∫
𝑑4−2𝜖 𝑝𝑟

(2𝜋)3−2𝜖 𝛿+(𝑝2
𝑟 ) (1 − 𝑧𝑟𝑖) RF

𝑖𝑟 (𝑝𝑟 ) Θ(𝑝𝑟 − 𝑧𝑟𝑖𝑝𝑖) , (25)

II,soft/soco
𝑎

(
𝜖, 𝑄, {𝑝} 𝑟/𝑛

)
=

∫
𝑑4−2𝜖 𝑝𝑟

(2𝜋)3−2𝜖 𝛿+(𝑝2
𝑟 ) R

I,soft/soco
𝑎 (𝑝𝑟 ) Θ(𝑝𝑟 ) , (26)

II,col
𝜒𝑟

(
𝜖, 𝑄, {𝑝} 𝑟/𝑛

)
=

∫
𝑑4−2𝜖 𝑝𝑟

(2𝜋)3−2𝜖 𝛿+(𝑝2
𝑟 ) RI,col

𝜒𝑟 (𝑝𝑟 ) Θ(𝑝𝑟 )
𝑥 𝐹 (𝑥 + 𝑥𝑟 , 𝑘⊥)
(𝑥 + 𝑥𝑟 )𝐹 (𝑥, 𝑘⊥)

, (27)

II,col
𝜒𝑟

(
𝜖, 𝑄, {𝑝} 𝑟/𝑛

)
=

∫
𝑑4−2𝜖 𝑝𝑟

(2𝜋)3−2𝜖 𝛿+(𝑝2
𝑟 ) RI,col

𝜒𝑟
(𝑝𝑟 ) Θ(𝑝𝑟 )

𝑥 𝑓 (𝑥 + 𝑥𝑟 )
(𝑥 + 𝑥𝑟 ) 𝑓 (𝑥)

. (28)

and
Θ(𝑞) = 𝜃 (𝑥𝑞 + 𝑥) 𝜃 (1 − 𝑥 − 𝑥𝑞) 𝜃 (𝑥𝑞 + 𝑥) 𝜃 (1 − 𝑥 − 𝑥𝑞) . (29)

We see that the integrated subtraction terms II,col
𝜒/𝜒,𝑟 involve the PDFs (their argument 𝜇𝐹

(
{𝑝} 𝑟/𝑛

)
is

omitted), and cannot be calculated analytically. They are the equivalent of what in [2] is called
the “P-operator”. The PDFs in the denominator appear because we insisted on having L

(
𝑄; {𝑝} 𝑟/𝑛

)
explicitly in Eq. (23), and the ratios 𝑥/(𝑥 + 𝑥𝑟 ) and 𝑥/(𝑥 + 𝑥𝑟 ) appear because the L-function
includes the flux factor. The integration over ®𝑝𝑟 ,⊥ can be easily performed, and then the variable
substitution 𝑥𝑟 = (1 − 𝑧)𝑥/𝑧 for Eq. (2.2), and 𝑥𝑟 = (1 − 𝑧)𝑥/𝑧 for Eq. (2.2), bring the expressions
to the familiar form.

The integrals represented by IF
𝑖𝑟

of Eq. (25) can in principle be performed analytically, but
the phase space restrictions dictated by Eq. (29) makes them unnecessarily cumbersome. Observe
however that the argument of Θ in IF

𝑖𝑟
, the momentum recoil, vanishes both at the collinear and the

soft limit, and replacing Θ with Θ − 1 makes the integral finite. The integral with Θ replaced by 1
can easily be calculated analytically, and the finite one with Θ − 1 can be performed numerically.
The latter means in practice that within the Monte Carlo integration of Eq. (23), for each phase
space point sampled from 𝑑Φ

(
𝑄; {𝑝} 𝑟/𝑛

)
, one generates three extra random numbers to construct 𝑝𝑟

and once evaluates the integrand of Eq. (25) (with Θ − 1 instead of Θ).
It turns out that also the phase space restriction of Eq. (20) complicates analytical integration

of the soft subtraction terms, which can be resolved by defining an integral with the restriction (and
Jacobian) in terms of

𝐸
(𝑖 𝑗 )
𝑟 =

(𝑝𝑟 ·𝑝𝑖)𝐸 𝑗 + (𝑝𝑟 ·𝑝 𝑗)𝐸𝑖

(𝑝𝑖 ·𝑝 𝑗)
(30)
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instead of 𝐸𝑟 . This variable vanishes as 𝐸𝑟 vanishes, and becomes 𝐸𝑟 if 𝑝𝑟 becomes collinear to
𝑝𝑖 or 𝑝 𝑗 . Furthermore, (𝑝𝑟 ·𝑝𝑖)/(𝑝𝑖 ·𝑝 𝑗) and (𝑝𝑟 ·𝑝 𝑗)/(𝑝𝑖 ·𝑝 𝑗) are the natural variables to perform
the integrals. The integral of the difference between the original integrand and the one in terms of
𝐸

(𝑖 𝑗 )
𝑟 can be performed numerically. The integrals represented by II,soft/soco

𝑎 of Eq. (26), finally,
can be treated with the same approach.

3. Results

All divergent parts of the integrated subtraction terms were calculated in [13], and it is shown
that the poles in 𝜖 indeed do not depend on the phase space restricting parameters. Furthermore,
it is shown that these poles have the exact universal form found in literature from other subtraction
schemes. This includes the initial-state collinear divergence given by the Born result times

− 𝛼s

2𝜋𝜖

∫ 1

0
𝑑𝑧 P𝜒 (𝑧)

1
𝑧
𝑓 (𝑥/𝑧) 𝜃 (𝑥 < 𝑧) , (31)

where P𝜒 (𝑧) is the collinear splitting function associated with initial state 𝜒, and also

− 𝛼s

2𝜋𝜖

∫ 1

0
𝑑𝑧

[
2𝑁c

[1 − 𝑧]+
+ 2𝑁c

𝑧

]
1
𝑧
𝐹 (𝑥/𝑧, 𝑘⊥) 𝜃 (𝑥 < 𝑧) , (32)

associated with the space-like initial state 𝜒, and coming from the subtraction term with the splitting
function of Eq. (22). Also, it is numerically confirmed for the explicit example of dĳet production
that the subtraction terms correctly perform the task of cancelling the singularities and that 𝜎fin

R of
Eq. (16) is finite. Finally, it is also numerically confirmed that the finite pieces of the integrated
subtraction terms added to the subtracted integral, Eq (10), is independent of the phase space
restricting parameters.
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