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1. Introduction

The past fifty years have seen the establishment of the Standard Model (SM) as the leading
paradigm of particle physics. With the Large Hadron Collider (LHC), its last predicted constituent
was discovered and the free parameters of the theory continue to be measured with ever-increasing
accuracy in an attempt to test the model, break it, and ultimately advance to a new level of un-
derstanding. Besides, there is hope that the new physics which causes phenomena the SM cannot
account for – even if the associated energy scale is inaccessible – might manifest as small deviations
in precision observables in the High-Luminosity run of the LHC. On the theoretical side, this shift
in how we make discoveries requires an upgrade from the leading-order calculations which helped
identify the building blocks of the SM and the next-to-leading-order calculations which established
it, to computational techniques which will test it at the ultimate, percent-level precision the LHC
can reach.

For the case of fixed-order predictions in quantum chromodynamics (QCD), the current stan-
dard is next-to-next-to-leading order (NNLO). N3LO computations are so far limited to processes
with colour-singlet particles in the final state (and crossings thereof), when in fact jets are the only
observable QCD object and are most relevant for fitting the strong coupling or parton distribution
functions (see [4] for a summary).

Three main obstacles stand in the way of N3LO calculations with jets. Firstly, the inherent
increase in computational cost and diminishing returns which are mitigated only by incremental
technological improvements. Secondly, the availability of scattering matrix elements which tie the
definition of the theory to the building blocks of physical observables. Recent progress includes
three-loop corrections to 2 → 2 scattering amplitudes with all on-shell [5]–[8] or one off-shell leg
[9], and two-loop corrections to five-parton scattering [10]–[12] or five-point with one off-shell leg
[13]. Lastly, each matrix element contributing to a cross section at a fixed perturbative order needs
to be integrated over the appropriate phase space, and their sum must be finite by the KLN theo-
rem [14], [15]. Nevertheless, the individual matrix elements are generically infrared (IR) divergent:
virtual (loop) corrections have explicit IR divergences in the dimensional regulator n = (4 − 3)/2,
whereas real corrections diverge in regions of the phase space where particles become soft/collinear.
Crucially, these infinities are not tangible until after the phase-space integration of the matrix ele-
ment which cannot be performed analytically except in the simplest cases.

2. Infrared subtraction

To overcome the last hurdle, one must identify the individual soft and collinear regions con-
tributing to the divergence of the real(-virtual) radiation matrix element and use QCD factorisation
theorems to describe each limit as a product of a simpler universal function which can be integrated
analytically, and a Born-level matrix element. In other words, one needs to design a counterterm S
to mimic the real correction ' in all unresolved regions and explicitly cancel the poles of the virtual
contribution + after integration over the unresolved partons, for example

f#!$ =

∫ [
+ +

∫
S3q1

]
3q= +

∫
[' − S] 3q=+1 , (1)
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where each integrand is now finite and suitable for numerical integration. This is the basis of sub-
traction schemes. In general, these methods rely on understanding unresolved limits of matrix
elements (see [3] for a list of relevant calculations at N3LO). As none of the established local sub-
traction schemes have yet been formulated and applied to processes with jets at N3LO, in these
proceedings I review the first steps taken within the framework of antenna subtraction [16], [17].

2.1 Antenna subtraction

Antenna subtraction is a promising candidate for extension to the next perturbative order due
to its maturity: it is local (after angular averaging), it features analytic pole cancellation, it can
handle hadrons in the initial state and jets in the final state and it boasts an efficient numerical
implementation at NNLO. The main challenges in any subtraction scheme are the construction of
the counterterm S which is process-dependent and its integration over the unresolved phase space.
Schemes where the identification between parts of the counterterm and the unresolved limits is very
tight must face the difficult integration of many soft/collinear functions. In antenna subtraction, the
ingredients for the counterterms are simple matrix elements which are relatively easy to integrate
but the complexity of the subtraction terms generally grows unfavourably with multiplicity, which
has been addressed in recent publications [18]–[21].

I briefly summarize how antenna subtraction works for final-state radiation at NNLO. The
double-real matrix element "0

=+2 can be described in the limit where one or two of the final state
partons become soft/collinear as follows [17]:

= + 2

→ ©« ª®¬︸         ︷︷         ︸
antenna function -0

3

·

= + 1

+
[
-0

4
-0

3-
0
3

]
=

The first term depicts the NLO-like limit which factorizes into the unintegrated antenna function
with 3 partons and 0 loops -0

3 and the reduced matrix element "̃0
=+1. The letter - is a placeholder for

a function name �, . . . , � which depends on the partonic species, see [16]. The double unresolved
limit is either iterated (-0

3-
0
3 ) or described by the four-parton tree-level antenna function -0

4 and
the Born-level matrix element "̃0

=.
The n-poles of the real-virtual matrix element due to single-unresolved radiation are described

by the integrated antenna function X0
3 defined above and one-loop single unresolved radiation, split

into a tree × loop and loop × tree structure,

= + 1

→ X0
3 ·

= + 1

+ -0
3 ·

=

+ -1
3 ·

=

where grey circles denote tree-level matrix elements, otherwise the number of loops is indicated.
Finally the poles of the double-virtual correction are entirely cancelled by integration of the antenna
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functions used above multiplied by lower-loop matrix elements:

= + 1

→ X0
3 ·

=

+


X0
4

X1
3

X0
3 ⊗ X0

3

 ·
=

An analogous sketch of the expected structure of the subtraction terms at N3LO was presented in
Eq.s (8)-(11) of [22]. In practice, one will start by enumerating the unresolved limits of the real
radiation matrix element at N:LO and proceed by partonic channel and colour factor (and colour
ordering). First the relatively few :-fold unresolved limits are covered with simple combinations of
the most divergent antenna functions. Since this intermediate counterterm also diverges in the many
double- and single-unresolved configurations considered later, one has to avoid over-subtraction and
the number of terms increases, which poses a computational but not conceptual obstacle.

3. Antenna functions in final-final kinematics

3.1 Definition

I turn my attention to the constituents of the subtraction terms. Antenna functions are the
simplest matrix elements which capture the IR poles of all possible QCD radiation from a pair of
‘‘hard’’ partons. In the kinematic configuration where both radiators are in the final state, they are
corrections to the decays of colour-singlet currents attached to a pair of radiators via a non-QCD
vertex. At N:LO, - :+2−=

= is the squared matrix element for the decay into = partons at : + 2 − =
loops (normalised by the Born amplitude), andX:+2−=

= is the integration over the inclusive =-particle
phase space. Tab. 1 summarises the matrix elements and underlying QFTs from which we extracted
the antenna functions with a pair of quarks, gluons or a quark and a gluon as hard radiators.

The quark-antiquark antenna functions can be extracted from either W∗ → @@̄ or � → 11̄

decay (with a Yukawa coupling but vanishing quark mass). The two processes deviate beyond the
two leading n poles due to the different Feynman rule in the coupling of the external current to
quarks. Besides, the absence of W` makes the configuration where the Higgs attaches to a closed
quark loop (singlet) vanishing, unlike for the photon. Gluon-gluon antennae can be derived from
corrections to the decay � → 66 in the large top mass limit.

The quark-gluon case is pathological: a colour-singlet particle cannot decay into a (* (3)-
fundamental and (* (3)-adjoint; a boson (like W, � above) cannot decay into a boson and a fermion.
If we want to retain the correct spin for the hard radiators, the decaying particle has to be fermionic,
and the products both (* (3)-adjoints. A theory in which this can be realised is the minimally-
supersymmetric extension of the SM (MSSM) where a neutralino can decay via a heavy squark
loop to a gluino (adjoint Majorana fermion) and a gluon. It suffices to work in a low-energy EFT
[23] where the neutralino couples directly to the hard radiators and let #� flavours of quarks and
#6̃ flavours of gluinos propagate in the diagrams. The particulars of the non-QCD coupling are
immaterial, the QCD radiation pattern between a gluon and a gluino emerges as we set #6̃ = 0, and
relates to that of a gluon and a quark simply via the adjustment of colour factors, see Sec. 4 in [3].
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quark-antiquark gluon-gluon quark-gluon
Computed in: [24], [1] ([2]) [25], [2] [26], [3]

�, �, � �, � �, �, �, �,  

@@̄(6) 66(6) 6̃6

666 @@̄6 6̃66(6); 6̃@@̄(6); 6̃6̃′6̃′(6); 6̃6̃6̃(6)
@@̄66(6) 6666(6) 6̃6666; 6̃@@̄66; 6̃@@̄@′@̄′

@@̄@@̄(6) 66@@̄(6) 6̃@@̄@@̄; 6̃6̃′6̃′66; 6̃6̃6̃66
@@̄@′@̄′(6) @@̄@@̄(6) 6̃6̃′6̃′@@̄; 6̃6̃6̃@@̄; 6̃6̃′6̃′6̃′′6̃′′

@@̄@′@̄′(6) 6̃6̃′6̃′6̃′6̃′; 6̃6̃6̃6̃′6̃′; 6̃6̃6̃6̃6̃
@̄

@

QCD
W∗ (�)

6

6

QCD
�

6̃

6

QCD
j̃

L&�� (+H1�k̄k) L&�� − _�

4 ��
`a
0 �0,`a L&�� + 8[k0

6̃f
`akj̃�

0
`a + (h.c.)

QCD (+ Yukawa, <1 = 0) QCD + HEFT QCD + EFT of MSSM
UB UB UB [27]

(H1 [28]) _� [29] [ [3]

Table 1: Three types of matrix elements used to derive final-final antenna functions: reference for the NNLO
and N3LO calculations, conventional names for - :+2−=

= , final states computed at N3LO, representative Feyn-
man diagrams, the relevant QFT and its Lagrangian, and the couplings which need to be renormalized. 6̃ is
a gluino and j̃ a neutralino, primes indicate different flavours of fermions. � is the Higgs field, �`a is the
gluon field strength and k6̃,-̃ the gluino and neutralino fields. H1, _� , [ are the Yukawa �11̄ coupling, the
Higgs effective coupling to gluons in the large top mass limit, and the effective coupling of a neutralino to a
gluino and gluon(s) via a low-energy EFT of the MSSM.

3.2 Computational method

The obvious way to compute the unintegrated (- :+2−=
= ) and integrated (X:+2−=

= ) antenna func-
tions is to evaluate the amplitudes depicted in Tab. 1 and integrate inclusively each final state over
the =-particle phase space. The complexity of a generic analytic phase-space integration is exactly
the issue which subtraction schemes circumvent, and the power of antenna subtraction is that the
integration of the IR counterterms can be rephrased using reverse unitarity [30], [31].

An arbitrary integral appearing in the N3LO antenna function X5−=
= , featuring = partons in the

final state with momenta labelled by ?U, 5 − = loop momenta :V , and a complete set of internal
propagators with momenta EW raised to integer powers, has the form

�5−== =

∫
3Π=︸   ︷︷   ︸

p.s. integration

(2c)3X (3)
(

=∑
U=1

?U

)
︸                   ︷︷                   ︸

mom. conservation

∫ 5−=∏
V=1

33:V

(2c)3︸           ︷︷           ︸
loop integration

∏
W

1
(E2

W)=W︸       ︷︷       ︸
propagators

. (2)
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Applying Cutkosky rules [32] to the =-particle phase space

3Π= =

=∏
U=1

33?U

(2c)3−1 X(?
2
U)\ (?0

U) (3)

−2c8X(?2
U)\ (?0

U) →
(

1
?2
U + 80

− 1
?2
U − 80

)
≡ 1

/?2
U

, (4)

we turn the phase-space integration into a loop integration involving a set of = ‘‘cut’’ propagators
in a 4-loop 2-point integral with forward kinematics, effectively putting the two types of integration
on equal footing,

�5−== = 8=−1

(∫ =∏
U=1

33?U

(2c)3
1
/?2
U

) ©«
∫ 5−=∏

V=1

33:V

(2c)3
∏
W

1
(E2

W)=W
ª®¬ (2c)3X (3)

(
=∑

U=1
?U

)
. (5)

We can therefore view the triple-real (RRR), double-real-virtual (RRV), RVV and VVV inte-
grated antenna functions as the 5-, 4-, 3-, and 2- particle cuts of a 4-loop QCD correction to the
0 = W, �, j̃ propagator. In this language, the sum of all the cuts (squared amplitudes with the
=-parton final state 5=) relates to the imaginary part of the uncut amplitude via the optical theorem

2 Im [M(0 → 0)] =
∑
5

∫
3Π 5M†(0 → 5 )M(0 → 5 ) (6)

=
∑
55

X0
5 ( 55) +

∑
54

X1
4 ( 54) +

∑
53

X2
3 ( 53) +

∑
52

X3
2 ( 52) . (7)

This quantity is equal to the total decay width of 0 into partons (jets), known as the '-ratio

' =
f(W∗ → partons)
f(W∗ → @@̄) , (8)

as an example for the photon. With these constraints in mind, the computation of the integrated
antenna functions is best organised as follows:

1. UV poles of self-energies
Consider O(U3

B) corrections to the photon, Higgs and neutralino propagators. Using the
dedicated programme FORCER [33], they can be reduced to a basis of known master in-
tegrals [34]. The n poles of the imaginary part of the resulting expressions are entirely UV
and with the knowledge of the lower loop orders, they determine the multiplicative renormal-
ization of the relevant couplings (see last row of Tab. 1).

2. Finite parts of self-energies
The finite remainders of the imaginary part of the renormalized self- energies are the '-ratios,
which particularly for the neutralino is a new result beyond NLO, and they provide a check
on the sum of all integrated antenna functions of a given type (a column in Tab. 1).

3. All physical cuts of self-energies
Finally, one can place two, three, four or five cuts in all physical ways on the self-energy di-
agrams and tag contributions with different numbers of closed loops either side of the cut,

6
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different particle species on cut, and colour factors. The evaluation of the diagrams and re-
duction to master integrals was described in [1]. The IR poles of these matrix elements which
relate to the integrated antenna functions are extracted with the help of the UV renormaliza-
tion constants obtained above and the totals are checked for pole cancellation and the finite
remainder against the '-ratios.

4. Results

The ultimate result of the calculation is a ‘‘dictionary’’ of simple decay matrix elements (sep-
arated by partonic final state, loop configuration, colour layer and colour ordering), on one side
integrated only over loops, and on the other side also over the phase space. The unintegrated tree-
level 1 → 5, one-loop 1 → 4 and two-loop 1 → 3 matrix elements are well-known except in
the neutralino case, and their unresolved limits will be compiled in a future publication. A better
understanding of how contributions from individual unresolved limits cancel between the various
real/virtual layers on the integrated level (between the antenna functions in the pole cancellation
check and hence in future subtraction terms) is vital for simplifying and interpreting the scheme.
Even though the integrated antenna functions have trivial kinematic dependence and are just n-
expansions of transcendental numbers with rational coefficients, several patterns emerge.

4.1 Structural observations

• Triple-virtual matrix elements (vertex form factors)
We compared to existing calculations of the W∗ → @@̄, � → 66 [35] and � → 11̄ [28] form
factors which differ from theX3

2 only by a trivial phase-space integration. Moreover, the poles
of VVV matrix elements (1 → 2 decays) admit a description using universal constants (cusp
and soft-collinear dimensions) and lower-loop-order matrix elements with Born kinematics
[36], [37]. Consequently, the knowledge of the gluon-gluino dipole radiation for example
determines the gluino contributions to the cusp, quark and gluon anomalous dimensions and
the gluino collinear anomalous dimension up to O(n3). Setting #� = 0 and #6̃ = 1, we
recover known results from N = 1 super-Yang-Mills theory [38].

• Comparison between dipoles of different partons
Conversely for the infrared poles of real or mixed real-virtual radiation, no universal descrip-
tion is known beyond NLO. However, comparing the decays W∗ → @@̄ and � → 11̄, we
see that the two deepest n poles appearing in any colour layer are identical. This pattern ex-
tends to the coefficients of transcendental numbers in lower poles: for example in the @@̄@′@̄6
final state, the colour factor #�# starts at O(n−5) and the coefficient of Z3 in the n−2 pole
(= 493/54) or the coefficient of c4 in the n−1 pole (= −3613/25920) coincide between the two
decays. A universal description of real radiation might receive distinct contributions from the
two hard partons. Indeed, at least for the two deepest poles, we find that after replacing ��

with �� to account for the difference between the quark and the gluino, schematically

Poles( j̃ → 66̃) = Poles(W∗ → @@̄) + Poles(� → 66)
2

, (9)

see Eqs. (5.39)-(5.41) of [3] for an exact formulation.

7
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• Notes on particular colour layers
From the inspection of colour factors, it is clear that multiple different integrated structures
combine already in the deepest poles at N3LO. For instance in the @@̄ antenna functions,
colour structures ���� and �2

�
show up at O(n−6) which cannot simply come from the � (1)

@@̄

operator of [39]. Often a colour factor only appears in two of the four layers, e.g. as a gluon-
to-quarks splitting and the corresponding loop, such as in the singlet contribution to the four-
and five-particle photon decays, and the cancellation is effectively NLO. Finally the most-
subleading colour layers receive contributions from Abelian (photon-like) gluons and have a
simple combinatorial explanation in terms of exponentiation of single emissions (see section
3.2 in [2]). Sometimes this pattern of cancellation (though not the purely combinatorial expla-
nation) extends also to more non-trivial factors like #� and #�#

−2 of the � → @@̄6(6) (6)
final states.

4.2 Phenomenological applications

An immediate application of final-final antenna functions at N3LO is the computation of the
forward-backward asymmetry of bottom and charm quarks in 4+4− annihilation in massless QCD.
Denoting with f�, (�) the cross section for the flavoured quark to be observed in the forward (back-
ward) hemisphere as indicated by the jet axis of the flavoured quark jet, the observable is

��� =
f� − f�

f� + f�

. (10)

The asymmetry is measured to 1%-level accuracy even before the new generation of proposed lepton
colliders (ILC, CLIC etc.) and particularly on the /-resonance it is very sensitive to the effective
weak mixing angle.

During the early approximate NNLO calculations [40], [41], an IR-safe definition of the hemi-
spheres proved challenging, and the two results disagreed significantly. This shortcoming (due to
@ → @@@̄ splitting at NNLO) was addressed in [42] and finally the full calculation was performed
using antenna subtraction [43]. The NNLO corrections are already percent-level, making the asym-
metry a precision observable, and the third-order corrections can now be computed including the
two-loop [44], [45] and three-loop [46] matrix elements with axial-vector coupling. Meanwhile
the total 2-jet rate has already been computed at this order using unitarity and lower-order results
in [47]. Three-jet production, on the other hand, offers an array of event-shape observables highly
sensitive e.g. to UB. The subtraction terms for this process are expected to be complicated and they
require a proper definition of the quark-gluon antenna function from the neutralino decay matrix
elements, as discussed in Sec. 5.2 of [3].

5. Conclusion

In this talk, I gave an overview of progress in extending antenna subtraction to N3LO final-
state radiation over the last two years. I argued that the definition of the scheme extends naturally
from NNLO and described the evaluation and phase-space integration of the antenna functions
necessary for building IR counterterms at this order. The presented ingredients are sufficient for
the computation of the total rate and forward-backward asymmetry in 2-jet production at lepton
colliders to O(U3

B).

8
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For a full description of hadron collider processes, QCD radiation will also need to be described
in initial-final and initial-initial kinematics. While the unintegrated antennas in the initial-final
configuration are related by crossing, first steps in the evaluation of master integrals for the integrated
functions were taken in [48].
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