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The calculation of hard scattering amplitudes up to NLO is automated in numerical tools, such
as OpenLoops. The LHC and future experiments, however, demand high-precision predictions
at NNLO and beyond for a wide range of particle processes. Hence, the development of a fully
automated tool for numerical NNLO calculations is an important goal.
In order to perform a numerical calculation, we decompose 𝐷-dimensional two-loop amplitudes
into Feynman integrals with four-dimensional numerators and (𝐷 − 4)-dimensional remainders,
which contribute to the finite result through the interaction with the poles of Feynman integrals and
are reconstructed during the subtraction procedure for these poles from universal rational terms.
The integrals with four-dimensional numerators are further decomposed into loop momentum
tensor integrals and tensor coefficients. We present the status of OpenLoops with respect to these
building blocks. The algorithm for the construction of the tensor coefficients is implemented for
QED and QCD corrections to the SM in a fully automated way. Recently, the renormalisation
procedure and the reconstruction of the interplay of (𝐷 − 4)-dimensional numerator parts with
UV poles through two-loop rational counterterms has been implemented and validated using an
in-house library for the reduction of simple tensor integrals.
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1. Introduction

Perturbative scattering amplitudes are a key ingredient for Monte Carlo simulations of collider
processes. Tree and one-loop amplitudes, required for LO and NLO predictions, have been
available from fully automated numerical tools, such as OpenLoops [1–3], for many years. In
order to meet the precision requirements of the LHC and future colliders, NNLO predictions for a
wide range of processes are essential, which makes a two-loop version of OpenLoops an important
goal. An automated numerical tool is based on two principles:

• The automated calculation of scattering amplitudes for many processes requires their
decomposition into process-independent constituents, from which we can construct them in
a recursive way.

• 𝐷-dimensional quantities cannot be computed numerically in a direct way, but have to
be constructed from quantities projected to integer dimensions. We construct integrand
numerators in four dimensions and reconstruct (𝐷 − 4)-dimensional parts through process-
independent counterterms, allowing also for the automation of this part.

Scattering amplitudes at a given loop order 𝐿 are computed from Feynman diagrams Γ,

M̄𝐿 (ℎ) =
∑︁
Γ

M̄𝐿,Γ (ℎ), (1)

where ℎ denotes the helicity configuration of the external particles of the process at hand and the
bar an amplitude in 𝐷 dimensions. For processes with M0 ≠ 0 the helicity and colour-summed
squared tree-level amplitude

WLO =
1

𝑁hcs

∑︁
ℎ,col

|M0(ℎ) |2, (2)

constitutes the LO contribution of the scattering probability density. Here, 1/𝑁hcs encodes the
average over initial-state helicity and colour d.o.f as well as symmetry factors (see [3]). A NLO
calculation consists of a real-emission contribution, which has the same form as (2) with one extra
unresolved particle, and the virtual contribution computed from the Born-loop interference

Wvirtual
NLO =

1
𝑁hcs

∑︁
ℎ,col

2 Re
[
M∗

0 (ℎ)RM̄1(ℎ)
]
, (3)

where

R M̄1(ℎ) = M1(ℎ) +M (CT)
0,1 (ℎ) . (4)

denotes the renormalisation procedure. The first term on the rhs of (4) is the unrenormalised
amplitude computed from Feynman integrals with numerator dimension 𝐷n = 4, which can be
decomposed into tensor integrals and numerically constructed coefficients. The second term M (CT)

0,1
stands for the tree-level amplitude with all relevant insertions of one-loop UV counterterms and
rational terms [4–7], where the latter reconstruct the (𝐷 − 4)-dimensional numerator parts.

A NNLO calculation consists of a double-real and a real-virtual part, which have the same form
as (2) with two and (3) with one extra particle respectively, and the double-virtual contribution

Wvirtual
NNLO =

∑︁
ℎ,col

2 Re
[
M∗

0 (ℎ) RM̄2(ℎ)
]
+ |RM̄1(ℎ) |2 (5)
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with

RM̄2(ℎ) = M2(ℎ) +M (CT)
1,1 (ℎ) +M (CT)

0,2 (ℎ) +M (CT)
0,1,1(ℎ) . (6)

While the first term on the rhs is the unrenormalised two-loop amplitude in 𝐷n = 4, each of the
three additional contributions embodies the counterterms for the subtraction of UV divergences in
combination with rational counterterms [8–10] for the reconstruction of the contributions of the
(𝐷 − 4)-dimensional numerator parts. The term M (CT)

1,1 (ℎ) denotes the one-loop amplitude with all
relevant one-loop counterterm insertions, while M (CT)

0,2 (ℎ) and M (CT)
0,1,1(ℎ) correspond, respectively,

to the tree-level amplitudes with single two-loop and double one-loop counterterm insertions. Note
that in any renormalisable model a finite set of process-independent UV and rational counterterms
exists, allowing for the automation of these terms with an extension of the one-loop OpenLoops.

The amplitudes on the rhs of (6) are further decomposed into loop momentum tensor integrals.
In practice we always compute the helicity and colour-summed interference of the terms in (4)

and (6) with the Born, needed in (3) and (5) respectively. The one and two-loop contributions read1∑︁
col,ℎ

2 Re
[
M∗

0 (ℎ) M1(ℎ)
]
=

∑︁
Ω∈T1

𝑅1∑︁
𝑟1=0

U (Ω)
𝜇1 · · ·𝜇𝑟1

∫
d𝑞1

𝑞
𝜇1
1 · · · 𝑞𝜇𝑟1

1
DΩ(𝑞1)

, (7)

∑︁
col,ℎ

2 Re
[
M∗

0 (ℎ) M2(ℎ)
]
=

∑︁
Ω∈T2

𝑅1∑︁
𝑟1=0

𝑅2∑︁
𝑟2=0

U (Ω)
𝜇1 · · ·𝜇𝑟1 𝜈1 · · ·𝜈𝑟2

∫
d𝑞1

∫
d𝑞2

𝑞
𝜇1
1 · · · 𝑞𝜇𝑟1

1 𝑞
𝜈1
2 · · · 𝑞𝜈𝑟2

2
DΩ(𝑞1, 𝑞2)

,(8)

where the integration measure in loop momentum space is defined as
∫

d𝑞𝑖 = 𝜇2𝜀
∫ d𝐷�̄�𝑖

(2𝜋 )𝐷
. The first

sum on the rhs is performed over the set of all 𝐿-loop topologies T𝐿 of the given process, where a
topology is defined by a product DΩ of scalar propagator denominators. Usually several Feynman
diagrams of a process share the same topology Ω. Defining GΩ to be the set of these diagrams, the
coefficients in (7) and (8) can be written as the sums of tensor coefficients of individual diagrams,

U (Ω)
𝜇1 · · ·𝜇𝑟1

=
∑︁
Γ∈GΩ

U𝜇1 · · ·𝜇𝑟1
(Γ), U (Ω)

𝜇1 · · ·𝜇𝑟1 𝜈1 · · ·𝜈𝑟2
=

∑︁
Γ∈GΩ

U𝜇1 · · ·𝜇𝑟1 𝜈1 · · ·𝜈𝑟2
(Γ). (9)

The advantage of this decomposition is that the tensor coefficients, can be computed numerically,
while keeping the analytical loop momentum structure in the tensor integrals. These can then be
reduced with analytical or numerical methods or a mixture thereof.

A full two-loop calculation along these lines requires three main building blocks which have
different levels of generality. The tensor coefficients are specific to a given process, while the tensor
integrals are shared by a whole process class, and the UV and rational counterterms only depend
on the given model. In the following, we will review the status of these building blocks and their
implementation in the OpenLoops framework.

2. Tensor coefficients

There are two main categories of two-loop diagrams, irreducible and reducible, as depicted in
Fig. 1. Irreducible diagrams consist of three propagator chains C𝑖 , each depending on a single

1The one-loop contributions with counterterm insertions are decomposed and constructed in the same way as the one-
loop contributions. Tree-level contributions with and without counterterm insertions are constructed purely numerically.
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Figure 1: Categorisation of two-loop diagrams into irreducible (Irred) and reducible (Red) ones. The
latter are further split into two subcategories, where two one-loop subdiagrams are either connected to a
tree structure 𝑃 through two vertices (Red2) or are attached to each other through a common quartic vertex
(Red1). The blue blobs denote subtrees connected to internal and external lines. In general V0,V1 can be
quartic vertices, in which case an external subtree is also attached there.

loop momentum 𝑞𝑖 (𝑖 = 1, 2, 3), with the boundary condition 𝑞3 = −(𝑞1 + 𝑞2). These chains are
connected by two vertices V0,V1, which in general depend on both independent loop momenta
𝑞1, 𝑞2. Reducible diagrams consist of two chains connected by a quartic vertex V4 or a tree
structure 𝑃, which is either a single propagator or includes external lines. Reducible diagrams can
be computed with an extension of the one-loop OpenLoops algorithm, while for diagrams of type
Irred a completely new algorithm was developed [11]. In all cases the automated computation of
the tensor coefficients exploits the factorisation of diagrams into universal building blocks, which
are defined by the Feynman rules and hence only depend on the model.

In OpenLoops, the subtrees 𝑤𝑎 needed for the tree and loop diagrams are constructed recursively
from smaller subtrees 𝑤𝑏, 𝑤𝑐 through steps

𝑤𝛼
𝑎 = α wa

ka

= α

wb

wc

kb

kc

=
𝑋𝛼
𝛽𝛾

(𝑘𝑏, 𝑘𝑐)
𝑘2
𝑎 − 𝑚2

𝑎

𝑤
𝛽

𝑏
𝑤

𝛾
𝑐 , (10)

starting from the wave functions of the external particles. The kernel 𝑋 is derived from the Feynman
rule of the connecting vertex and adjacent propagator with mass 𝑚𝑎 and momentum 𝑘𝑎. Tree-level
diagrams are constructed by connecting two subtrees into the full diagram.

The amplitude of an L-loop diagram Γ is computed as

M𝐿,Γ (ℎ) = 𝐶𝐿,Γ

∫
d𝑞1 · · ·

∫
d𝑞𝐿

N(𝑞1, · · · , 𝑞𝐿 , ℎ, Γ)
DΩ(𝑞1, · · · , 𝑞𝐿)

, (11)

with a colour factor 𝐶𝐿,Γ 2 and a loop integral, of which both the numerator N and the denominator
DΩ have a strongly factorised structure. The denominator is a product of 𝑁 scalar propagator
chains3

DΩ(𝑞1, · · · , 𝑞𝐿) =
𝑁∏
𝑖=1

D (𝑖) (𝑞𝑖) with (12)

2Diagrams with non-factorisable colour structures due to quartic vertices are split into colour-factorised contributions,
each of which is treated as a separate diagram by OpenLoops.

3For one-loop diagrams 𝑁 = 1, for reducible two-loop diagrams 𝑁 = 2 and for irreducible two-loop diagrams 𝑁 = 3.
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each of which is a product of scalar propagator denominators

D (𝑖) (𝑞𝑖) = 𝐷
(𝑖)
0 (𝑞𝑖) · · ·𝐷 (𝑖)

𝑁𝑖−1(𝑞𝑖) , where 𝐷
(𝑖)
𝑎 (𝑞𝑖) = (𝑞𝑖 + 𝑝𝑖𝑎)2 − 𝑚2

𝑖𝑎 (13)

with an external momentum 𝑝𝑖𝑎 and a mass 𝑚𝑖𝑎.
The numerator of a one-loop diagram

N(𝑞1, ℎ, Γ) = Tr
[
𝑆1(𝑞1, ℎ

(1)
1 )· · ·𝑆𝑁1 (𝑞1, ℎ

(1)
𝑁1

)
]

(14)

factorises into loop segments

𝑆𝑎 (𝑞, ℎ (1)𝑎 ) =
βa−1

wa

ka

Da

βa

= {𝑌 𝑎
𝜎 + 𝑍𝑎

𝜈;𝜎 𝑞𝜈} 𝑤𝜎
𝑎 (ℎ (1)𝑎 ), (15)

each consisting of a loop vertex and propagator encoded in the universal building blocks 𝑌, 𝑍 and
one or two sub-trees 𝑤𝑎 with external momentum 𝑘𝑎 and helicity configuration ℎ

(1)
𝑎 . Each segment

is a matrix with Lorentz or spinor indices 𝛽𝑎−1, 𝛽𝑎, and the trace in (14) connects the indices 𝛽0

and 𝛽𝑁 . Starting from two loops, diagrams factorise into 𝑁 chains

N (𝑖) (𝑞𝑖 , ℎ (𝑖) ) = 𝑆
(𝑖)
0 (𝑞𝑖 , ℎ (𝑖)0 ) · · · 𝑆 (𝑖)

𝑁𝑖−1(𝑞𝑖 , ℎ
(𝑖)
𝑁𝑖−1). (16)

corresponding to the denominator chains D (𝑖) (𝑞𝑖). Each N (𝑖) is a product of loop segments of
the same form (15) as at one-loop level. The helicity labels are defined in an additive way (see
[11]), such that the helicity configuration of a chain is given by ℎ (𝑖) = ℎ

(𝑖)
1 + . . . + ℎ

(𝑖)
𝑁𝑖−1. The open

Lorentz or spinor indices of the numerator chains are connected to vertices V𝑖 or tree structures 𝑃.
At two loops the numerator factorisation reads4

N(𝑞1, 𝑞2, ℎ, Γ) =



3∏
𝑖=1

N (𝑖) (𝑞𝑖 , ℎ (𝑖) )
1∏
𝑗=0

V𝑗 (𝑞1, 𝑞2, ℎ
(𝑉 )
𝑗

) for Γ ∈ GIrred,

2∏
𝑖=1

N (𝑖) (𝑞𝑖 , ℎ (𝑖) )V4 for Γ ∈ GRed1,

2∏
𝑖=1

Tr
[
N (𝑖) (𝑞𝑖 , ℎ (𝑖) )

]
𝑃(ℎ (𝑃) ) for Γ ∈ GRed2,

(17)

defining the sets of all two-loop diagrams Gc of the three categories depicted in Fig. 1.
Multiplying the numerator of a diagram Γ with the corresponding Born-colour interference

U0(ℎ, Γ) = 2
∑︁
col

M∗
0 (ℎ) 𝐶𝐿,Γ, (18)

yields its contribution to the squared matrix element (3) or (5). The tensor coefficients of this object
as defined in (9) are computed from universal building blocks in recursion steps of the form

Û𝑛 = Û𝑛−1 · K𝑛. (19)

4The helicity label ℎ
(𝑉 )
𝑗

appears if V𝑗 is a quartic vertex with an attached subtree. ℎ (𝑃) is the helicity of the
connecting tree structure of a Red2 diagram. The global helicity label ℎ is the sum of these labels and the chain helicities
ℎ (𝑖) .
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The building blocks K𝑛 are the loop segments (15) of the loop chains, the connecting structures
V𝑗 , 𝑃 in (17) and the factor U0 defined in (18), all of which consist of a process-independent kernel
and/or a previously computed tree structures. At one-loop level the recursion has the form [2, 3]

U𝑛 (𝑞1, ℎ̌
(1)
𝑛 ) =

∑︁
ℎ
(1)
𝑛

U𝑛−1(𝑞1, ℎ̌
(1)
𝑛−1) · 𝑆𝑛 (𝑞1, ℎ

(1)
𝑛 ) with ℎ̌

(1)
𝑛 = ℎ −

𝑛∑︁
𝑎=1

ℎ
(1)
𝑎 , (20)

with steps 𝑛 = 1, . . . , 𝑁1 and initial condition (18). Exploiting the fact that only U0 and 𝑆𝑛 depend
on the helicity dof of the external particles in the n-th segment, we sum over these helicities on the
fly (see [2] for details). Since the loop momenta on the two chains of reducible two-loop diagrams
are independent and the connecting structures V4 or 𝑃 do not depend on any loop momentum, the
calculation can be factorised into two one-loop recursions, one of the form (20) and one of the form

N𝑛 (𝑞2, ℎ̂
(2)
𝑛 ) = N𝑛−1(𝑞2, ℎ̂

(2)
𝑛−1) · 𝑆

(2)
𝑛 (𝑞2, ℎ

(2)
𝑛 ) with ℎ̂

(2)
𝑛 =

𝑛∑︁
𝑎=1

ℎ
(2)
𝑎 and N−1 = 11 (21)

Contracting the tensor coefficients computed in the recursion (21) for chain C2 with the correspond-
ing pre-computed one-loop tensor integrals and either V4 or 𝑃, results in an object that can be
treated like an external subtree in a segment of the the recursion (20) used on C1.

For irreducible diagrams we developed a completely general and highly efficient recursive algo-
rithm, described in detail in [11] and summarized in [12]. Here the chains are sorted by number of
segments such that 𝑁1 ≥ 𝑁2 ≥ 𝑁3 and the vertices V0,1 by vertex type, which plays an important
role for the CPU efficiency of the algorithm. Then the numerator N (3) (𝑞3, ℎ

(3) ) of the shortest
chain is constructed first with an algorithm of the form (21) and used as a single building block in
the following recursion of the form (19) with the ordered set of building blocks

K𝑛 ∈
{
U0, 𝑆

(1)
1 , . . . , 𝑆

(1)
𝑁1−1,V1,N (3) ,V0, 𝑆

(2)
1 , . . . , 𝑆

(2)
𝑁1−1

}
. (22)

Here, we employ an on-the-fly helicity summation as introduced in (20), reducing the number of
helicity dof of the computed coefficients in every step. This procedure balances the high tensor rank
complexity in later steps of the algorithm with a low number of helicities, for which the intermediate
tensor coefficients are computed. The algorithms for all categories of two-loop diagrams are fully
implemented and validated for QED and QCD corrections to the Standard Model.

3. Tensor integrals - First steps

At one-loop level tensor integrals are reduced on the fly [2], i.e. during the tensor coefficient
construction, to a small set of scalar integrals, which are then evaluated with Collier [13] or
OneLoop [14]. Alternatively, Collier can be used for the full reduction and evaluation of tensor
integrals. This is required for the pre-computed tensor integrals used in the construction of reducible
two-loop diagrams or for one-loop squared amplitudes.

In order to validate the full two-loop OpenLoops framework, in particular the implementation
of UV and rational counterterms described in the next section, we implemented a first tool for the
reduction of simple tensor integrals to scalar master integrals based on the method of projectors
and IBP reduction [15]. This method is general, but for higher tensor ranks, high-point topologies,

6
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and different propagator masses, the intermediate results become very large limiting the practical
scope of this approach.

The tool consists of general Fortran part with all numerical routines and an analytical generator
written in Mathematica, which for any tensor integral

𝐼𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠 =

∫
d𝑞1

∫
d𝑞2

𝑞
𝜇1
1 · · · 𝑞𝜇𝑟1

1 𝑞
𝜈1
2 · · · 𝑞𝜈𝑟2

2
DΩ(𝑞1, 𝑞2)

(23)

of a given two-loop topology Ω performs the following steps: First, we derive a covariant decom-
position of the final result,

𝐼𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠 =
𝑁𝑡∑︁
𝜏=1

𝑇
𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠
𝜏 𝐼𝜏 , (24)

where we sum over all 𝑁𝑡 possible tensor structures 𝑇𝜏 constructed from the metric tensor and the
external momenta. This yields a system of equations (𝛼 = 1, . . . , 𝑁𝑡 )

𝑇𝛼,𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠 𝐼
𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠 =

∑︁
𝜏

𝑀𝛼𝜏 𝐼𝜏 with 𝑀𝛼𝜏 = 𝑇𝛼,𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠𝑇
𝜇1 · · ·𝜇𝑟 𝜈1 · · ·𝜈𝑠
𝜏 , (25)

which is solved for the coefficients 𝐼𝜏 by inverting the matrix 𝑀𝛼𝜏 . Since the lhs of (25) is a scalar
integral, the 𝐼𝜏 are now expressed as linear combinations of scalar integrals. These are reduced
to master integrals with FIRE [16, 17] followed by an expansion in 𝜀 = (4 − 𝐷)/2 to the required
order. The final expressions for the tensor integrals in terms of the master integrals are then stored
into a Fortran library for a given topology, which is further structured into modules for specific
tensor ranks. These libraries can then be called by the general Fortran part. For the evaluation of
the master integrals we use a combination of analytical expressions – currently massless two and
three-point integrals [18] – implemented in our code and the numerical tool FIESTA [19]. The
generator part is written in a fully general way, but for memory and CPU performance reasons we
currently only used this tool for the full set of massless two-point and three-point tensor integrals
appearing in renormalisable theories, as well as a few four-point ones. This is sufficient for the
validation of the UV and rational counterterms and the re-computation of some simple amplitudes,
such as the QED and QCD vertex corrections. It is also expected to be useful for the validation and
completion of a more powerful new method and tool for higher-point topologies and higher tensor
ranks which is currently being developed.

4. Renormalisation and UV rational terms - Implementation and validation

In [8] we derived a formula for the computation of renormalised two-loop amplitudes in 𝐷

dimensions, which is compatible with the above construction of tensor coefficients and tensor
integrals and for a two-loop diagram Γ of type Irred or Red1 reads5

R M̄2,Γ = M2,Γ +
∑︁
𝛾

(
𝛿𝑍1,𝛾 + 𝛿�̃�1,𝛾 + 𝛿R1,𝛾

)
· M1,Γ/𝛾 +

(
𝛿𝑍2,Γ + 𝛿R2,Γ

)
M0,Γ . (26)

While the lhs is fully 𝐷-dimensional, the amplitudes on the rhs are computed with four-dimensional
loop numerators and 𝐷-dimensional denominators. The sum in the second term is performed over

5These are the diagram types which become 1PI upon amputation of the external subtrees.

7



P
o
S
(
L
L
2
0
2
4
)
0
7
3

Status of two-loop automation in OpenLoops Max F. Zoller

×
(δZ1,γ+δZ̃1,γ+δR1,γ)

×
(δZ1,γ+δR1,γ)

×
(δZ1,γ+δR1,γ)

(O1a) (O1b) (O2)

Figure 2: Categories of one-loop diagrams with counterterm insertions. The master formula for two-loop
diagrams of type Irred requires up to three contributions of type O1a and O1b. Two-loop Red1 diagrams
each require up to two O1b contributions, Red2 diagrams each require up to two contributions of type O2.

all UV-divergent one-loop subdiagrams 𝛾 ⊂ Γ and M1,Γ/𝛾 the one-loop amplitude resulting from
contracting 𝛾 to a vertex in Γ. The UV counterterms 𝛿𝑍1,𝛾 and 𝛿�̃�1,𝛾 subtract the subdivergences6
stemming from 𝛾, while the one-loop rational term 𝛿R1,𝛾 [4–7] restores the interplay of (𝐷 − 4)-
dimensional numerator parts of the subdiagram amplitude M1,𝛾 with its UV divergence. The
last term consists of the tree-level amplitude derived from contracting the usual two-loop UV
counterterm 𝛿𝑍2,Γ projected to four dimensions and a two-loop rational term restoring the remaining
(𝐷 − 4)-dimensional numerator parts of M̄2,Γ interacting with UV poles of the loop integral. It is
straightforward to extend 𝛾 and Γ in (26) from single diagrams to vertex and propagator functions
due to the linearity of R, and (26) to (6) due to the linearity of (1). The full set of two-loop rational
terms for QED and QCD corrections to the Standard Model has been presented in [9, 10]. While
this procedure recovers the full contribution of the UV poles the interplay of (𝐷 − 4)-dimensional
numerator parts with IR poles is still under investigation, but first insights were presented in [20].

For a reducible diagram Γ of type Red2, which factorises into one-loop subdiagrams 𝛾1, 𝛾2 to
which the one-loop procedure can be applied, the master formula reads

R M̄2,Γ = M2,Γ +
2∑︁
𝑖=1

(
𝛿𝑍1,𝛾𝑖 + 𝛿R1,𝛾𝑖

)
· M1,Γ/𝛾𝑖 +

2∏
𝑖=1

(
𝛿𝑍1,𝛾𝑖 + 𝛿R1,𝛾𝑖

)
M0,Γ/(𝛾1∪𝛾2 ) . (27)

The relevant types of one-loop and tree-level diagrams with counterterm insertions for a full two-
loop calculation are depicted in Fig. 2 and Fig. 3, respectively.

The computation of all relevant contributions at two-loop, one-loop and tree level with the
proper counterterm insertions as well as their combination to fully renormalised 𝐷-dimensional
amplitudes are implemented in the OpenLoops framework. The counterterms for QED and QCD
are currently computed in the MS scheme, but this is simple to extend to other schemes [9]. There
are some technical subtleties in extending OpenLoops for diagrams of type O1a and O1b, such as
the interplay of the 1

𝜀
pole of 𝛿𝑍1,𝛾 with the O(𝜀) contributions of the one-loop integral. Since

these are not provided by our external one-loop integral tools [13, 14], we currently perform the
one-loop tensor integral reduction and evaluation with the tool described in Section 3. The same
applies to integrals with squared scalar propagators stemming from diagrams of type O1b.

In order to validate this implementation we compute full two-loop off-shell vertex functions,
which avoid IR divergences, in QED and QCD with OpenLoops, using the building blocks described

6𝛿𝑍1,𝛾 is the usual UV counterterm with its tensor structure projected from 𝐷 to four dimensions, while 𝛿𝑍1,𝛾 is a
new but also universal counterterm which is non-zero only for one-loop subdiagrams of mass dimension 2.
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×

(δZ2,Γ+δR2,Γ)

×

(δZ1,γ2
+δR1,γ2

)

×

(δZ1,γ1
+δR1,γ1

)

(T1) (T2)

Figure 3: Categories of tree-level diagrams with counterterm insertions. The master formula for two-loop
diagrams of type Irred and Red1 with a global UV divergence require a contribution of type T1, while
two-loop diagrams of type Red2 require a contribution of type T2 if both subdiagrams are UV divergent.

in the previous sections. As a first step, we checked the cancellation of the UV poles in (6) for
several two and three-point amplitudes in QED and QCD, which is non-trivial since, in addition to
the loop amplitudes and UV counterterms, also 𝛿R2,Γ usually exhibits a 1

𝜀
pole. The check for the

four-point QCD vertex function and the calculation of the finite parts of all QED and QCD vertex
functions, to be compared to the literature, are ongoing and will serve as a full validation of our
renormalisation procedure as well as a first application of two-loop rational terms in OpenLoops.

5. Conclusion

We presented the status of an automated numerical two-loop tool in the OpenLoops framework
consisting of three main building blocks. For the construction of the two-loop tensor coefficients
a completely general and highly efficient algorithm has been developed and implemented. The
reduction of the corresponding tensor integrals has been implemented for simple cases with the
scope of testing the full two-loop framework. The complete renormalisation procedure including
the two-loop rational terms has been implemented. A more powerful method for the tensor integral
reduction and a consistent framework for the treatment of two-loop rational terms of IR origin are
under development, which will open the door to a wide range of applications for this tool.
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