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1. Introduction

Multiloop calculations belong to the fields of research that heavily depend on software tools
and the available computational resources. Obviously, the majority of steps necessary to calculate
a Feynman diagram involves repetitive algebraic manipulations that are highly amenable to au-
tomation. However, the number of the required manipulations as well as the number of Feynman
diagrams at higher perturbative orders tend to grow so fast, that any attempt to approach such cal-
culations in a naive way will inevitably break down. This is why the development of public codes
implementing state-of-the-art algorithms and streamlining the common steps required to perform
higher-order perturbative calculations is crucial to enable further progress in the field.

While automation of tree- and one-loop-level calculations has been successfully pushed forward
since several decades (cf. e. g. refs. [1–18]), the multi-loop case still remains more challenging.
Despite some progress in the last years [19–26], even at two loops a fully generic code for automatic
cross-section and decay rate calculations is still out of reach.

On the one hand, we have plethora of publicly available tools for handling different steps of
multiloop Feynman diagram evaluation including a powerful symbolic manipulation system FORM
[27, 28] capable of handling expressions containing millions of terms. On the other hand, full
automation of such calculations in a manner similar to e. g. MadGraph or FormCalc is still far
from being attainable due to many technical challenges accompanying such endeavors.

Partial automation, i. e. generation of Feynman diagrams, their algebraic simplification and
the reduction of loop integrals to masters, is something that has been done by the practitioners
since many years. Unfortunately, in most cases no usable codes were made public. Some famous
programs such as q2e and exp from Karlsruhe [29, 30] are not freely downloadable but at least
available upon request.

In recent years this situation started to change with many frameworks addressing automatic
calculations of multiloop amplitudes being made available to the wider public under open source
licenses. Some notable examples are Alibrary1, tapir [31], FeAmGen.jl [32], HepLib [33, 34]
or MaRTIn [35]. This is undoubtedly a very positive development in our field that has potential to
make such calculations more accessible to the vast majority of particle theorists.

In this proceeding we would like to report on another tool that falls into this category, known
under the name of FeynCalc [36–40]. Unlike most other multiloop codes that were written
from scratch, this Mathematica package has been known to the community for almost 35 years.
Initially developed as a tool for one-loop calculations, it gradually evolved towards higher loops,
culminating in the official release of FeynCalc 10 at the end 2023. In addition to that, we have
developed a collection of interfaces connecting FeynCalc to useful multiloop-related programs
such as QGRAF [41], FIRE [42–44], KIRA [45–49], FIESTA [50, 51], pySecDec [52] or FERMAT
[53]. This FeynHelpers add-on for FeynCalc has not yet been officially released but is already
publicly available2 and properly documented.

This report is organized as follows. In Section 2 we describe the implementation of FeynCalc’s
new multiloop capabilities and briefly mention the related routines. The FeynHelpers add-on is
covered in Section 3, while Section 4 showcases a practical application of this technology in the

1https://magv.github.io/alibrary/

2https://github.com/FeynCalc/feynhelpers
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context of Soft-Collinear-Effective-Theory (SCET) [54–57]. Finally, in Section 5 we summarize
the current state of affairs.

2. FeynCalc

The most crucial step in making FeynCalc useful for multiloop calculations was to introduce
some sort of topology minimization mechanism. As a typical Feynman amplitude may contain
thousands of seemingly different topologies, finding mappings between those and thus reducing the
number of integral families that need to be IBP-reduced is indispensable.

Here we opted for the so-called Pak algorithm [58], an approach that consists of finding one-
to-one mappings between topologies by comparing a particular combination of their Symanzik
polynomials U and F . Normally, when switching to the Feynman parametric representation
from the propagator representation, the invariance of the integral under loop momentum shifts
is translated into the invariance under renamings of the Feynman parameters 𝑥𝑖 . Pak algorithm
introduces a procedure to determine a unique ordering of 𝑥𝑖 for the given characteristic polynomial
P = 𝑓 (U, F ). Thus, integral families or single loop integrals can be conveniently compared with
each other by calculating their P and ordering it according to Pak.

To that aim we introduced the routine FCFeynmanPrepare that determines the Symanzik
polynomials of the given integral or topology. As far as the symbolic representation of the latter is
concerned, loop integrals are called GLI, while topologies are represented using FCTopology con-
tainers. These three building blocks constitute the essence of FeynCalc’s multiloop functionality.

The two main high level functions on top of that are called FCLoopFindTopologyMappings
and FCLoopFindIntegralMappings. Given an input in form of FCTopologys or GLIs they can
automatically work out all one-one-to-one mappings detectable by means of the Pak algorithm. In
addition to that, there are many further routines for manipulating input expressions containing GLI
and/or FCTopology symbols. For further information we refer to the official manual available as a
PDF file 3.

In general, given some multiloop amplitude 𝑖M the stages of calculating it with FeynCalc
will look as follows

1. Simplify 𝑖M using DiracSimpliy, SUNSimplify etc.

2. Identify the occurring topologies with FCLoopFindTopologies

• In the case of an overdetermined set of propagators use FCLoopCreatePartial-
FractioningRules

• If the set of propagators is incomplete, employ FCLoopBasisFindCompletion

3. To map smaller topologies onto bigger ones first find all nonvanishing subtopologies via
FCLoopFindSubtopologies

4. Minimize the number of the topologies using FCLoopFindTopologyMappings

3https://github.com/FeynCalc/feyncalc-manual/releases/tag/dev-manual
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5. Apply the mappings to 𝑖M and eliminate all integrals in favor of GLIs using FCLoopApply-
TopologyMappings

6. Do the IBP reduction for the occurring GLIs using external tools (e. g. FIRE or KIRA)

7. Insert the reduction tables into 𝑖M

8. Check for one-to-one mappings between master integrals with FCLoopFindIntegral-
Mappings

9. Insert analytic or numerical results for the master integrals

Although the complexity of a typical multiloop calculations might be too high for the capabil-
ities of Mathematica, in some cases FeynCalc and FeynHelpers alone could be still sufficient
to obtain the final result within a reasonable time frame. Moreover, the multiloop related routines
can be of course also used in other contexts, e.g. when doing most of the calculation in FORM but
still employing FeynCalc at some intermediate steps.

Many ideas behind this implementation were adopted from the thesis of Jens Hoff [59] that
contains a very detailed description of Pak’s algorithm and related ideas. Also his unfinished
Mathematica package TopoID4 was enormously useful for our purposes. The main algorithm of
FCFeynmanPrepare was taken from FIRE’s FindRules routine.

3. FeynHelpers

The main motivation behind the development of FeynHelpers [60] was the following ob-
servation. Even though the multiloop community is very prolific in terms of software tools for
automatizing different aspects of higher order perturbative calculations, the practical applications
of such codes in real-life projects is not entirely straightforward. One of the reasons is that formats
of configuration files as well as input and output expressions vary from tool to tool. Using the
output of one code as an input for another code always requires some conversion steps that are
tedious to implement and require a formidable amount of glue scripts written in bash, Python,
Mathematica or other suitable languages. Owing to the popularity of FeynCalc among particle
physics practitioners we deemed that the format used in this package (in particular with the new GLI
and FCTopology symbols) can be used as a common denominator for exchanging results between
various programs.

FeynHelpers is implemented as a collection of interfaces between FeynCalc and some
selected tools that are commonly used in multiloop calculations. As of now we support QGRAF,
Package-X [61, 62], LoopTools [18], FIRE, KIRA, FIESTA, pySecDec and FERMAT. The add-
on provides high-level functions that accept input in FeynCalc format and allow processing it either
by directly calling the corresponding tool in the background or by generating scripts for running
that tool either locally or on a cluster. Options can be used to steer the evaluation process or to
adjust tool’s settings. For further information we refer to the official manual available as a PDF file
5.

4https://github.com/thejensemann/TopoID

5https://github.com/FeynCalc/feynhelpers-manual/releases/tag/dev-manual
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To be more specific here, let us explain how FeynHelpers can be used to perform an IBP-
reduction of loop integrals that were obtained in some calculation and then loaded into FeynCalc
as a list of GLIs with the corresponding FCTopologys.

In the first step we need to supply the topologies to the function FIREPrepareStartFile. This
routine will generate Mathematica scripts for analyzing the given topologies using LiteRed [63]
(one script per topology) and for creating .start or .sbases and .lbases files needed for the
reduction. Depending on the complexity of the topology running those scripts can take a significant
amount of time and should be in general done on a cluster. However, for simple cases where the
whole process only takes few seconds, it is also possible to run them directly from an evaluation
notebook by calling FIRECreateStartFile.

Then, we also need to create the .config file for the reduction as well as the list of integrals
being reduced. This can be handled via FIRECreateConfigFile and FIRECreateIntegralFile
respectively. The reduction itself should be definitely done on a cluster, but again as a matter of
convenience for very simple cases we also offer a function FIRERunReduction that will start it as a
background process directly from a Mathematica notebook. Finally, using FIREImportResults
we can load the reduction tables into our notebook and convert them into a list of replacements
rules where GLIs are substituted by a linear combination of simpler master integrals (also in the
GLI format).

We would like to stress that this interface can be useful also in FORM-based setups where
one needs to prepare FIRE runcards for a large number of integral families obtained in the course
of some calculation completely unrelated to FeynCalc. The only thing one needs to do is to
convert the occurring integral families and loop integrals into the FCTopology and GLI formats
respectively.

4. Structure of soft-overlap contribution to 𝐵𝑐 → 𝜂𝑐 form factors

The presented tools have already been employed in a real-life multiloop calculation, where
we were interested in obtaining a better understanding of QCD factorization with a systematic
inclusion of power corrections. Although power corrections can be studied in the framework of
SCET, some effects appearing at subleading power, in particular the end-point divergent convolution
integrals, still remain problematic. As has been shown recently [64], the possible remedy in form
of refactorization [65, 66] does not solve all problems in hard-exclusive processes. To illustrate
this point more explicitly, it is useful to consider the 𝐵𝑐 → 𝜂𝑐 form factors in the nonrelativistic
approximation (𝑚𝑏 ≫ 𝑚𝑐 ≫ ΛQCD). This process can serve as a perfect laboratory to study the
all-order structure of the associated double-log corrections. In particular, the all-order double-log
structure at large recoil can be predicted from solving coupled integral equations and then explicitly
verified using a method-of-regions analysis [67].

However, in order to check this conjecture at fixed order up to three-loops one extra ingredient
is needed: the purely hard-collinear coefficient 𝐹hc(𝛾), with

𝐹 (𝛾) ≡ 1
2𝐸𝜂

⟨𝜂𝑐 (𝑝𝜂) |𝑐Γ𝑏 |𝐵𝑐 (𝑝𝐵)⟩ . (1)

The building block 𝐹hc(𝛾) has to be explicitly extracted from the corresponding diagrams evaluated
at two and three loops, where multiloop techniques become indispensable. To be more specific, we

5
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need to consider two and three-loop QCD corrections to the process (cf. Figure 1)

𝑏(𝑚𝑏𝑣
𝜇) 𝑞𝑢 (𝑚�̄�𝑢𝑣

𝜇) → 𝑊 (𝑞1) 𝑞(𝑚𝑞𝑣
′𝜇) 𝑞𝑢 (𝑚𝑞𝑣

′𝜇), (2)

where 𝑞𝑢 denotes an up-type antiquark, while 𝑞 stands for some other light quark. In a physical 𝜂𝑐
meson one obviously has 𝑞𝑢 = 𝑐 and 𝑞 = 𝑐, but here for pedagogical purposes we choose to treat
them as different species. The kinematics is chosen such that

𝑣𝜇 =
𝑛𝜇 + �̄�𝜇

2
, 𝑣2 = 1, (3)

𝑣′𝜇 = 𝛾𝑛𝜇 + �̄�𝜇

4𝛾
, (𝑣′)2 = 1, (4)

𝛾 ≡ 𝑣 · 𝑣′, (5)

where 𝑛 and �̄� are two light-like reference vectors that satisfy

𝑛2 = �̄�2 = 0, 𝑛 · �̄� = 2, (6)

so that every four-vector 𝑘 can be decomposed into

𝑘𝜇 =
�̄�𝜇

2
(𝑘 · 𝑛) + 𝑛𝜇

2
(𝑘 · �̄�) + 𝑘

𝜇
⊥ ≡ 𝑘

𝜇
+ + 𝑘𝜇− + 𝑘

𝜇
⊥. (7)

To extract the limit we are interested in, all loop momenta 𝑘𝑖 are considered to be hard-collinear,
i. e. their components scale as (𝑘+, 𝑘−, 𝑘⊥) ∼ (𝜆2, 1, 𝜆). The scaling of the remaining quantities is
as follows

𝑚𝜂 ∼ 𝜆2, 𝛾 ∼ 1
𝜆2 , 𝑚𝑏 ∼ 1, 𝑘𝑖 · 𝑛 ∼ 𝜆2, 𝑘𝑖 · �̄� ∼ 1, 𝑘2

𝑖 ∼ 𝜆2. (8)

To ensure the correct scaling of the 𝑏-quark propagators, it is crucial, that the hard momentum
𝑝𝑏 = 𝑚𝑏𝑣

𝜇 is always routed through the internal 𝑏-lines and the external 𝑊-line. Letting it flow
through gluon or other light quark propagators would spoil the power counting and lead to wrong
results.

To decrease the number of scales entering the calculation it is useful to introduce the dimen-
sionless mass ratios

�̄�0 ≡
𝑚�̄�𝑢

𝑚𝜂

, 𝑢0 ≡
𝑚𝑞

𝑚𝜂

= 1 − �̄�0, (9)

where a physical 𝜂𝑐 would have

𝑢0 = �̄�0 = 1/2. (10)

This way we can eliminate the light quark masses using

𝑚𝑞 = (1 − �̄�0)𝑚𝜂 , 𝑚�̄�𝑢 = �̄�0𝑚𝜂 , (11)

so that the final result will depend only on �̄�0, 𝑚𝜂 , 𝑚𝑏 and 𝛾. Luckily, for our purposes we only
need the coefficient in front of the leading pole of the amplitude, which reduces the number of
scales even further. Effectively, only the �̄�0-dependence of master integrals is nontrivial at leading
power.

We perform this calculation using an automatized setup that employs FORM and FeynCalc.
The code itself is called LoopScalla and will be published in near future. A preliminary version
thereof is already available online6. In this setup we use QGRAF to generate the required diagrams

6https://github.com/FeynCalc/LoopScalla
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u u

h hc

hchc

hc

pb

Figure 1: A representative one-loop diagram for the 𝐵𝑐 → 𝜂𝑐 transition at partonic level. The dashed line
represents an emitted 𝑊-boson, while “h” and “hc” mean, that the corresponding propagators are hard or
hard-collinear respectively. The purple line shows the correct routing of the 𝑏-quark momentum that respects
the assigned power-counting rules. Dressing this diagram with more gluons generates higher order QCD
corrections to this process.

and FORM for the insertion of Feynman rules. Dirac and color algebra simplifications as well
as the expansion of the amplitudes in the hard-collinear limit are also done using FORM. Having
extracted all naive topologies appearing in the amplitude we switch to FeynCalc for the purpose
of finding mappings between different integral families, performing partial fractioning for cases
with overdetermined propagator bases and adding extra propagators when a basis is incomplete.
In addition to that, FeynCalc also generates rules for rewriting loop momentum-dependent scalar
products in terms of inverse propagator denominators.

The results of this calculational step are exported as FORM id-statements and the insertion of
the topology mappings into preliminary results is done in FORM. Then, after having extracted the
final list of loop integrals for every integral family we use FeynHelpers to generate run cards for
FIRE. Upon performing the IBP reduction we again employ FeynHelpers to load the reduction
tables and to export them as FORM id-statements. These reduction rules are then converted into
FORM tablebases and finally inserted into the amplitudes.

Then, all master integrals are evaluated numerically using pySecDec in order to determine the
leading power of the 𝜀-pole in each of them. Substituting those results into the final expression
significantly decreases the number of integrals that need to be calculated numerically, since many
masters do not contribute to the final result. Instead of calculating the remaining masters analytically,
we choose a different semi-numerical approach that exploits the fact that we only need their leading
poles7. Making a rational function ansatz

𝑏∑︁
𝑖=−|𝑎 |

𝑐𝑖�̄�
𝑖
0 +

1
1 − �̄�0

𝑏′∑︁
𝑖=−|𝑎′ |

𝑐′𝑖�̄�
𝑖
0 +

1
(1 − �̄�0)2

𝑏′′∑︁
𝑖=−|𝑎′′ |

𝑐′′𝑖 �̄�
𝑖
0, 𝑎, 𝑏, 𝑎′, 𝑏′, 𝑎′′, 𝑏′′ = 3, 4, 5 (12)

for each leading pole coefficient we evaluate each integral numerically at 22 special points

�̄�0 = 1/2, 1/3, 1/4, . . . 1/9, 2/3, 2/5, . . . 3/4, 3/5, . . . (13)

7At three loops also subleading poles of some master integrals can enter the 1/𝜀6-piece of the full amplitude. However,
at two loops the presented approach was fully sufficient.

7
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and convert the results into rational numbers using Mathematica’s Rationalize function. Em-
pirically, we found that numerators and denominators containing prime factors larger than 9 lead to
“bad” points that should be discarded, while the remaining “good” points are kept. For example,
while 5/14 means that we have a “good” point, a point generating 113/167 gets removed.

Putting these results together, we can generate a system of linear equations for each master
integral and successfully determine all 𝑐𝑖 , 𝑐′𝑖 and 𝑐′′

𝑖
coefficients analytically. These results can be

easily cross checked by performing more evaluations using pySecDec or calculating some of the
simpler integrals analytically. At two loops the final result for the leading pole reads

𝑖M (2) ∼ 1
𝜀4

(
𝐶2
𝐹

15�̄�0 + 17
�̄�3

0
− 𝐶𝐴𝐶𝐹

�̄�0 + 5
2�̄�3

0

)
, (14)

which confirms the diagrammatic analysis done in ref. [67].
The three-loop calculation is currently under way. As compared to the two-loop case, here we

have to deal with 20759 diagrams (722 at two-loops) and 6276 integral families (377 at two-loops).
The final results are expected to appear this year.

5. Summary

In this talk we highlighted key features of FeynCalc 10 that implements the long-awaited
routines for semi-automatic multiloop calculations. We also discussed the issue of interfacing
different loop-related codes with each other and presented our solution in form of an easy-to-use
FeynCalc add-on that tackles this task for some popular programs. Last but not least, we showed
a practical application of this tools to a SCET-related problem using our FORM-based framework
that employs FeynCalc and FeynHelpers.
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