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phenomenological results showing the relevant ratios of the fully massive computation with respect
to the massless ones.
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1. Introduction

The production of two prompt photons is one of the most important processes at the LHC for several
reasons. Due to the clear signature of the photons in the LHC calorimeters, diphoton production
is important for measuring the fundamental parameters within the Standard Model and at the same
time for searching for new physics. For the same reason, it was one of the two most important
channels for the discovery of the Higgs boson, and it still constitutes an irreducible QCD background
for the Higgs.
The state of the art for this process included scattering amplitudes in the massless case up to NNLO
[1–4] and in the massive case the 𝑔𝑔 → 𝛾𝛾 with partial N3LO contributions [5–8]. Furthermore,
amplitudes for 𝛾𝛾 + 𝑗 [9–13] and form factors up to 3 loops in the massless case [14] have been
known in literature. For a full NNLO accuracy, there was still one contribution missing. We discuss
the computation of our main contribution, i.e. the two-loop massive form factors for the partonic
process 𝑞𝑞 → 𝛾𝛾 [15] and then we use this result in order to consider for the first time diphoton
production at NNLO, taking into account the full top quark mass dependence [16], including all the
massive contributions.

2. Two-Loop form factors in the quark annihilation channel

In this section we consider the computation of the two-loop form factors in the quark annihilation
channel with a heavy quark running in the loop. This was the last missing ingredient for a full
NNLO study of the diphoton production in QCD.
At the partonic level, the scattering amplitude is represented by:

𝑞(𝑝1) + 𝑞(𝑝2) = 𝛾(𝑝3) + 𝛾(𝑝4), (1)

where the external particles are on-shell, i. e. 𝑝2
𝑖
= 0.

Using tensor decomposition [17], our amplitude can be decomposed as:

A𝑞𝑞,𝛾𝛾 (𝑠, 𝑡, 𝑚2
𝑡 ) =

4∑︁
𝑖=1

F𝑖 (𝑠, 𝑡, 𝑚2
𝑡 )𝑇𝑖 , (2)

where the 𝐹𝑖 are the scalar form factors and the 𝑇𝑖 = 𝑣(𝑝2)Γ𝜇𝜈

𝑖
𝑢(𝑝1)𝜖3,𝜇𝜖4,𝜈 are the independent

Lorentz tensors, which depends only on the external momenta and polarisations. We choose the
tensors as:

Γ
𝜇𝜈

1 = 𝛾𝜇𝑝𝜈2 , Γ
𝜇𝜈

2 = 𝛾𝜈 𝑝
𝜇

1 , Γ
𝜇𝜈

3 = 𝑝3,𝜌𝛾
𝜌𝑝

𝜇

1 𝑝
𝜈
2 , Γ

𝜇𝜈

4 = 𝑝3,𝜌𝛾
𝜌𝑔𝜇𝜈 . (3)

The form factors admits a perturbative expansion in the strong coupling and since we are interested
in computing the massive corrections that starts to appear at O(𝛼2

𝑠), we just need to study this part
of the expansion:

F (2)
𝑘

= 𝛿𝑖 𝑗𝐶𝐹 (4𝜋𝛼𝑒𝑚)
[
𝑄2

𝑞F
(2)
𝑘,𝑡𝑜𝑝;0 +𝑄2

𝑡F
(2)
𝑘,𝑡𝑜𝑝;2

]
, (4)

where 𝑄𝑞 is the charge of the light quark, 𝑄𝑡 is the charge of the heavy quark, 𝛿𝑖 𝑗 is the Kronecker
delta on the colors of the incoming quarks and 𝐶𝐹 is the Casimir of the fundamental representation
of 𝑆𝑈 (𝑁𝑐).
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Our form factors do not have IR poles, they only have UV poles coming from the term proportional
to F (2)

𝑘,𝑡𝑜𝑝;0. They are renormalized adopting a mixed renormalization scheme in which the external
quark fields are renormalized on-shell, while 𝛼𝑠 is renormalized such that the contribution coming
from the light-quarks is in 𝑀𝑆 and the contribution from the heavy-quark is on-shell.
We generated the Feynman diagrams with QGRAF [18] and FeynArts [19] . In Fig. 1, we show a
representative subset of them.

Figure 1: Representative set of two-loop diagrams with internal heavy-quark loops, which contribute at
NNLO QCD to diphoton production in the quark annihilation channel. Thin black lines represents light
quarks, thick black lines heavy quarks, curly lines gluons and wavey lines photons.

We have identified two planar topologies, PLA and PLB, and a non-planar topology NPL.
The form factors are expressed in terms of a basis of MIs, exploiting IBPs reductions. Identifying
all the common MIs, we have built our amplitude in terms of only 42 MIs (modulo permutation of
the external legs).
The MIs for the PLA and PLB families were already studied [20]. We presented, as original result,
a new set of MIs coming from the NPL, represented in Fig. 2

Figure 2: New set of MIs coming from the NPL integral family

The MIs are evaluated through the differential equations method. Specifically, we studied the three
topoplogies separately. For the PLA family, we put the system of differential equations, with respect
to the kinematics invariants 𝑥 = {𝑦, 𝑧}, where 𝑦 = 𝑠

𝑚2
𝑡

and 𝑧 = 𝑡

𝑚2
𝑡

, in canonical logarithmic form [21]
. The vector of boundary conditions is 𝑥 = 0, where all except two MIs vanishes. In principle, given
the system in canonical logarithmic form with the set of d-log forms it would be possible to find an
analytic solution for the MIs. However, there is a set of 5 non simultaneously rationalizable square
roots and the solution is non trivial. Furthermore, since we were interested in phenomenological
study, we decided to not provide an analytical solution, and the MIs were evaluated semi-analytically
exploiting the generalised power series expansion method [22], implemented in DiffExp [23].
For the PLB family all the MIs, except one, are equal to one of the MIs of the other two families.
The last MIs were already know and his analytic solution was already provided.
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Fot the NPL family, the situation was more complicated. We wrote the system of DEs in the
following form:

𝑑𝑔(𝑥, 𝜖) = 𝜖𝑑𝐴(𝑥)𝑔(𝑥, 𝜖) + 𝑑 𝐴̃(𝑥, 𝜖)𝑔(𝑥, 𝜖). (5)

This means that the system is divided into two different subsets. The first one is given by the MIs
whose differential equations can be putted in canonical logarithmic form, while the second is given
by MIs whose analytic structures involves integration over elliptic kernels [24, 25]. For the first
subset the situation is also more complicated than PLA, since we have here 9 non simultaneously
rationalizable square roots. The second subset has two elliptic sectors: the first one is given by the
non-planar triangle and the second by our new double-box top sector.
We have studied the homogeneous system of differential equations through the maximal cut in
Baikov representation:

∝
∫

𝑑𝑧√︃
(𝑧 + 𝑡) (𝑠 + 𝑡 + 𝑧) ((𝑧 + 𝑡) (𝑠 + 𝑡 + 𝑧) − 4𝑠𝑚2

𝑡 )
, (6)

and, as expected, we got an elliptic curve.
We observed that with a Möbius transformation, 𝑧 → 𝑧 − 𝑡, the elliptic curve is the same obtained
for the non-planar triangle [26]. New studies have been done to determine an epsilon-factorized
form on the maximal cut [27].
Since we were interested in phenomenological studies, we decided to solve the MIs semi-analitically
through the generalised power series technique. This has several advantages, first of all, it doesn’t
depend on the function space, so we can completely avoid elliptic integrals and, most importantly,
we can evaluate the MIs at arbitrary phase-space points with arbitrary precision.
At NNLO, the cross-section for this process can be computed in the 𝑞𝑇 -subtraction scheme [28]:

𝑑𝜎
𝛾𝛾

𝑁𝑁𝐿𝑂
= H 𝛾𝛾

𝑁𝑁𝐿𝑂
⊗ 𝑑𝜎

𝛾𝛾

𝐿𝑂
+ [𝑑𝜎𝛾𝛾+ 𝑗

𝑁𝐿𝑂
− 𝑑𝜎𝐶𝑇

𝑁𝐿𝑂], (7)

where the terms inside the square brackets represent the cross section for diphoton plus jet production
at NLO and the corresponding counterterm needed to cancel the singularities for small 𝑞𝑇 . Our
massive corrections are inside the H 𝛾𝛾

𝑁𝑁𝐿𝑂
term. Specifically:

H 𝛾𝛾 =
|A ( 𝑓 𝑖𝑛)

𝑞𝑞,𝛾𝛾
|2

|A (0)
𝑞𝑞,𝛾𝛾

|2
. (8)

We made a grid for the hard function covering the 2 → 2 physical space:

𝑠 > 0, 𝑡 = − 𝑠

2
(1 − 𝑐𝑜𝑠𝜃), −𝑠 < 𝑡 < 0, (9)

where 𝜃 is the scattering angle in the partonic center of mass frame.
The grid in Fig. 3 was prepared for a total of 13752 phase-space points, in the range:

−0.99 < cos 𝜃 < 0.99, 8 GeV <
√
𝑠 < 2.2 TeV . (10)

The evaluation times for the different topologies, on a single CPU core, are of O(2.5ℎ) for PLA
and O(10.5ℎ) for NPL.
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Figure 3: Numerical grid for H 𝛾𝛾

NNLO as function of
√
𝑠 and 𝑐𝑜𝑠(𝜃)

The grid for phenomenology was interpolated with cubic spline interpolation. In particular, to check
the results, a second grid was prepared in some points evaluated with the interpolation method and
the check was made computing the percentage error:

% 𝐸𝑟𝑟𝑜𝑟 =
H 𝛾𝛾

𝑁𝑁𝐿𝑂−𝑔𝑟𝑖𝑑 (𝑝𝑖, 𝑗) − H 𝛾𝛾

𝑁𝑁𝐿𝑂−𝑠𝑝𝑙𝑖𝑛𝑒 (𝑝𝑖, 𝑗)
H 𝛾𝛾

𝑁𝑁𝐿𝑂−𝑔𝑟𝑖𝑑 (𝑝𝑖, 𝑗)
∼ O(0.3%) (11)

In Fig. 4 we show the points, corresponding to the evaluation of the first grid, in red, and the petrol
colored point for the evaluation of the second grid.

Figure 4: Schematic representation of the procedure exploited to build the two grids with DiffExp. The dots
represents the points in which the MIs are evaluated and the dashed lined connect two sequential evaluations.

3. NNLO results with full top-quark mass dependence

In this section we include our scattering amplitude with the previously known massive and massless
amplitudes in order to present our results about the full NNLO QCD corrections to diphoton
productions. We studied isolated diphoton production in 𝑝𝑝 collisions at the center-of-mass energy√
𝑠 = 13 𝑇𝑒𝑉 and we fixed the top quark mass to 𝑚𝑡 = 173 𝐺𝑒𝑉 . We decided to adopt the smooth
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cone isolation criterion [29, 30] in order to avoid possible fragmentation components and possible
quark-photon collinear divergences. In particular we fixed the size R of the cone around the photon
to allow only the hadronic activity, inside the cone, that satisfy:

𝐸ℎ𝑎𝑑
𝑇 (𝑟) ≤ 𝜖 𝑝𝑇𝛾 𝜒(𝑟; 𝑅), (12)

where 𝑝𝑇𝛾 is the transverse momentum of the photon and 𝜒(𝑟; 𝑅) is a smooth function that goes to
zero for 𝑟 → 0. We used the fiducial cuts discussed in the ATLAS Collaboration study in [31].
The central factorization and renormalization scale is chosen to be equal to the invariant mass of
the diphoton pair 𝜇 ≡ 𝜇𝑅 = 𝜇𝐹 = 𝑀𝛾𝛾 and the theoretical uncertainty is estimated by a seven-point
scale variation.

Figure 5: Ratio of different massive corrections to the massless one. In the upper panel the ratio for the
2-loop 𝑞𝑞-channel and in the lower panel the ratio for the 1-loop box in the 𝑔𝑔-channel.

In the upper panel of Fig. 5 we show the ratio between the fully massive and the massless invariant
mass distribution of the two-loop hard function. As expected the distribution exhibits its negative
peak around the top-quark pair threshold (2𝑚𝑡 ). After a second peak around 2.3 · 2𝑚𝑡 the tail
decreases. We observe that also the correction obtained considering six light quark flavors is
smaller than the corresponding one with five flavors. In the bottom panel we show the ratio of the
one-loop box in the 𝑔𝑔-channel. We have the negative peak around the top-quark pair threshold, but
contrary to what happens in the 𝑞𝑞 case, here the tail is not decreasing . Furthermore, asymptotically

(𝑀𝛾𝛾 >> 𝑚𝑡 ) the ratio approaches to
(∑𝑛 𝑓

𝑒2
𝑞 )2

(∑𝑛 𝑓 =5 𝑒
2
𝑞 )2 = 225

121 , implying that the massive contribution

behaves as if it were composed by six light quark flavors.
In Fig. 6 we present our final result about the invariant mass distribution of the diphoton at NNLO
in perturbative QCD. In the lower panel we show the ratio between the fully massive NNLO result
and the NNLO prediction for five light quark flavors. We have the negative peak around the top-
quark pair threshold due to a superposition of the effects from the different loop contributions.
For 𝑀𝛾𝛾 > 2𝑚𝑡 we have a positive peak around 2 · 2𝑚𝑡 and subsequently the massive corrections

6
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Figure 6: NNLO invariant mass distribution with full top quark mass dependence.

becomes larger than the massless one. Specifically, in the invariant mass region 1 𝐺𝑒𝑉 < 𝑀𝛾𝛾 < 2
𝑇𝑒𝑉 the deviation from the massless result is in the range [−0.4%, 0.8%].
We want to underline that due to the vanishing luminosity of the gluons for large values of 𝑀𝛾𝛾 ,
our corrections in the 𝑞𝑞-channel will be dominant in the high invariant mass region.

Figure 7: Ratios of each massive contribution with respect to the NNLO massless cross section as a function
of the invariant mass.

Finally, in Fig. 7 we show the ratio of each massive contribution to the diphoton production up
to NNLO. In particular we have the two-loop (double-virtual) corrections to the Born sub-process
𝑞𝑞, the real radiation contributions (real-virtual and double-real) and the box in gluon fusion. As
expected, at this order, the 𝑞𝑞 (dot-dashed black line) and the 𝑔𝑔 one-loop box (red line) are the
most sizeable contributions in the full invariant mass range. The double-real corrections (dotted
blue line) are not relevant for phenomenology and since they are due to the tree-level production of

7
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on-shell top quarks there is no peak around the threshold. The effect of the real-virtual corrections
(dashed green line) reduces the size of the negative peak around the top-quark pair threshold, but it
is subdominant with respect to the other corrections.

4. Conclusions

We presented the computation of the last missing part for a full study of diphoton production at
NNLO in QCD. In particular, we discussed the computation of the two-loop form factors and the
relevant scalar integral families in the quark-annihilation channel. We showed that some of the new
MIs of the NPL family are related to a genus one Riemann surface, and we made the connection
with the elliptic curve of the non-planar triangle explicit. The MIs were evaluated through the
generalized power series technique, and we created a grid in the physical phase-space to perform
the phenomenology. Finally, we show the invariant mass distribution of the full NNLO diphoton
production in QCD and the relevant ratios of the fully massive contributions with respect to the
massless ones.
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