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Top-quark loops in 𝑔𝑔 → 𝑍𝑍 at NLO in QCD Marco Vitti

1. Introduction

The production of a pair of 𝑍 bosons plays a key role in the Higgs physics program of the LHC,
as well as in other tests of the Electroweak (EW) theory, and an improvement of the theoretical
predictions within the Standard Model is very important in view of the High-Luminosity phase of
the LHC.

Concerning the status of fixed-order predictions, the dominant partonic channel 𝑞𝑞 → 𝑍𝑍

[1] is known up to next-to-next-to-leading order (NNLO) QCD [2–7] and NLO EW [8–10]. The
gluon-induced channel [11, 12] is known with lower precision, and in particular the virtual NLO
QCD corrections have not been computed in exact analytic form. The major challenge is in the
calculation of the two-loop box diagrams that feature loops of top quarks, like the ones showed in
fig. 1 (d-f). At present, these diagrams have been computed using numerical approaches [13–15]
or analytic approximations [16–20]. The top loops are especially important in the region of high
invariant mass of the 𝑍-boson pair, as they give the dominant contribution to the interference
between Higgs-mediated and continuum 𝑔𝑔 → 𝑍𝑍 .

In these proceedings we consider the process 𝑔𝑔 → 𝑍𝑍 and we discuss some details of the
calculation of the top-mediated box diagrams at NLO in QCD via another analytic approximation,
known as the 𝑝𝑇 expansion, which is suitable for a significant part of the phase space. This method
[21, 22] relies on the expansion of the amplitude in the limit of a small transverse momentum of
the final-state particles, 𝑝𝑇 . We also discuss, following ref. [23], how this expansion can be merged
with the so-called high-energy (HE) expansion [20], in order to obtain an accurate and flexible
approximation over the complete phase space.

2. The 𝑔𝑔 → 𝑍𝑍 amplitude in the 𝑝𝑇 expansion

We define the amplitude as

A =
√

2𝑚2
𝑍𝐺𝐹

𝛼𝑠 (𝜇𝑅)
𝜋

𝛿𝑎𝑏 𝜖𝑎𝜇 (𝑝1)𝜖𝑏𝜈 (𝑝2)𝜖∗𝜌 (𝑝3)𝜖∗𝜎 (𝑝4) Â𝜇𝜈𝜌𝜎 (𝑝1, 𝑝2, 𝑝3), (1)

where 𝐺𝐹 is the Fermi constant, 𝛼𝑠 (𝜇𝑅) is the strong coupling constant evaluated at a renormal-
isation scale 𝜇𝑅 and the polarization vectors of the gluons and the 𝑍 bosons are 𝜖𝑎𝜇 (𝑝1), 𝜖𝑏𝜈 (𝑝2)
and 𝜖𝜌 (𝑝3), 𝜖𝜎 (𝑝4), respectively. The Lorentz structure of the amplitude is encoded in the tensor
Â𝜇𝜈𝜌𝜎 (𝑝1, 𝑝2, 𝑝3). In order to simplify the evaluation of the cross section, we express the latter in
terms of a set of 20 orthonormal projectors

Â𝜇𝜈𝜌𝜎 (𝑝1, 𝑝2, 𝑝3) =
20∑︁
𝑖=1

P𝜇𝜈𝜌𝜎

𝑖
A𝑖 (𝑠, 𝑡, 𝑢̂, 𝑚𝑡 , 𝑚𝑍 , 𝑚𝐻), (2)

where 𝑠, 𝑡, 𝑢̂ are the partonic Mandelstam variables and 𝑚𝑡 , 𝑚𝑍 , 𝑚𝐻 are the top, 𝑍 and Higgs
masses, respectively. The above decomposition relies on a specific gauge choice for the external
gluons, as discussed also in refs. [20, 24, 25]. We consider a perturbative expansion of the form
factors in the strong coupling

A𝑖 = A (0)
𝑖

+ 𝛼𝑠

𝜋
A (1)

𝑖
+ O(𝛼2

𝑠). (3)
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Figure 1: Representative Feynman diagrams contributing to the 𝑔𝑔 → 𝑍𝑍 amplitude at NLO. Loops of
bottom quarks are included only in the double-triangle diagrams (c).

We are interested in the NLO form factors, which admit a decomposition in terms of diagram
topologies: triangles, boxes and double triangles

A (1)
𝑖

= A (1,△)
𝑖

+ A (1,□)
𝑖

+ A (1,⊲⊳)
𝑖

, (4)

with example diagrams in fig. 1 (a,b), (d-f) and (c), respectively. Here, we discuss the calculation
of the A (1,□)

𝑖
, which is the most complicated part, as the associated Feynman integrals depend on

the four energy scales 𝑠, 𝑡, 𝑚2
𝑡 , 𝑚

2
𝑍

.
In the 𝑝𝑇 expansion, the A (1,□)

𝑖
are expanded in the limit of a forward kinematics. This is

achieved by considering the reduced variable

𝑡′ =
𝑡 − 𝑚2

𝑍

2
= − 𝑠′

2

1 −

√︄
1 − 2

𝑝2
𝑇
+ 𝑚2

𝑍

𝑠′

 , (5)

where 𝑠′ = 𝑠/2, and by performing an expansion of the amplitude for 𝑡′ → 0, which in turn is
implemented via a Taylor expansion for small 𝑝2

𝑇
and 𝑚2

𝑍
. More details can be found in ref. [26].

Notably, the expansion is performed at the level of the loop integrands. This offers a technical
advantage, as the structure of the original two-loop integrals can be simplified before integration,
reducing the number of relevant scales down to a single scale, given by the ratio 𝑠/𝑚2

𝑡 . The latter
quantities are associated to the heavy scales in our approximation, leading to the hierarchy

𝑝2
𝑇 , 𝑚

2
𝑍 ≪ 𝑠, 𝑚2

𝑡 . (6)

After the expansion and Integration-by-Parts (IBP) reduction, the box form factors are expressed as

A (□)
𝑖

= N(𝑝2
𝑇 , 𝑚

2
𝑍 )

∞∑︁
𝑁=0

∑︁
𝑖+ 𝑗=𝑁

𝑐𝑖 𝑗 (𝑝2
𝑇 )𝑖 (𝑚2

𝑍 ) 𝑗 , (7)

where the 𝑐𝑖 𝑗 coefficients are linear combinations of the master integrals (MI) resulting from the
IBP reduction, which in turn depend on 𝑠/𝑚2

𝑡 , while N(𝑝2
𝑇
, 𝑚2

𝑍
) is an overall normalization factor

which may depend on 𝑝2
𝑇

and 𝑚2
𝑍

. At NLO, we find a basis of 52 known MIs [27–32], two of which
are elliptic integrals that can be evaluated using the routines of ref. [33].
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Figure 2: The partonic cross section at LO, 𝜎̂ (0) , including both triangle and box diagrams. The exact result
is shown as a dark solid line, while the results obtained using different orders of the 𝑝𝑇 expansion for the
A (0,□)

𝑖
are shown as dashed lines. In the bottom part, the ratio of each order over the exact result is shown.

2.1 Merging the 𝑝𝑇 and high-energy expansions

The 𝑝𝑇 expansion can accurately reproduce the exact result only in a specific region of the
physical phase space, corresponding to values |𝑡 | ≲ 4𝑚2

𝑡 for any 𝑠. For example, when looking at
the partonic cross section at LO shown in fig. 2, one can see that the the accuracy is well below
the percent level when the first few terms in the expansion are included, but the agreement is
ensured only for 𝑀𝑍𝑍 ≲ 700 GeV. Indeed, at higher invariant masses the region |𝑡 | ≳ 4𝑚2

𝑡 gives
an increasingly important contribution to the box form factors, and the hierarchy of eq. (6) is not
always justified. In ref. [23], it was shown that the correct behaviour of the amplitude at high
energies can be accounted for by complementing the 𝑝𝑇 expansion (or a similar forward expansion,
see ref. [34]) with the HE expansion, which has been applied to 𝑔𝑔 → 𝑍𝑍 in ref. [20], assuming
the scale hierarchy

𝑚2
𝑍 ≪ 𝑚2

𝑡 ≪ 𝑠, 𝑡. (8)

Furthermore, to ensure that a good accuracy is maintained everywhere in phase space, it is important
to improve the convergence of both expansions using Padé approximants. The results of this
approach for the NLO form factor A (1,□)

9 are shown in fig. 3. For a fixed value of 𝑠, the border
of validity of the 𝑝𝑇 and HE expansions, where the solid lines show a divergent behaviour, is
−𝑡/(4𝑚2

𝑡 ) ∼ 1. In the vicinity of this point, the Padé-improved versions of the 𝑝𝑇 and HE
expansion, shown as dashed lines, are well behaved, and they deviate with respect to each other by
less than 0.1%.

We implemented the Padé-improved form factors in analytic form into a FORTRAN code,
which then uses the most suitable approximation for a given phase-space point. In particular, for the
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Figure 3: NLO form factor for
√
𝑠 = 1200 GeV in various approximations: 𝑝𝑇 expansion (solid blue),

[1/1] Padé approximant based on the 𝑝𝑇 expansion (dashed, light blue), high-energy expansion (solid, pink)
and [6/6] HE Padé approximant (dashed, rosa). The lower panel shows the relative difference of the Padé
approximants only.

high-energy region, defined by |𝑡 | > 4𝑚2
𝑡 and |𝑢̂ | > 4𝑚2

𝑡 , we use a [6/6] Padé constructed from the
HE expansion, while for the rest of the phase space we use a [1/1] Padé based on the 𝑝𝑇 expansion.

We compared our results for the two-loop box diagrams with the helicity amplitudes obtained
in the numerical calculation of ref. [13]. In fig. 4 we show the relative difference for the helicity
amplitude ++00. We observe that, for both of the phase-space regions defined in our approach, the
differences are below 1%, with the majority of phase-space points deviating by less than 0.1%.

3. Conclusions

We presented the computation of the top-mediated box diagrams for 𝑔𝑔 → 𝑍𝑍 at NLO in QCD
using the 𝑝𝑇 expansion, which provides accurate results in a phase-space region that so far has not
been covered by other analytic approximations. Where a comparison with other approaches was
possible, we found a very good agreement with previous calculations, both analytic and numerical.
Furthermore, we have complemented our approximation with the results obtained in ref. [20],
showing that a combination of the 𝑝𝑇 and the HE expansions, improved using Padé approximants,
allows a complete coverage of the phase space without a significant loss of accuracy. Since these
results are in analytic form, they can be conveniently implemented in a Monte Carlo code for
phenomenological studies.

A natural extension of this work would be to test the applicability of the 𝑝𝑇 expansion to higher
loops. Several steps in this direction have been taken in the case of a different 2 → 2 process, namely
Higgs pair production. In this context, a complete account of the three-loop virtual corrections
seems to require not only a forward expansion [35], but also asymptotic expansions [36].
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Figure 4: Relative difference between several phase-space points of ref. [13] and the merging of the Padé-
improved 𝑝𝑇 and HE expansions for the helicity amplitude ++00. Points in the shaded region are outside the
formal limit of validity of the 𝑝𝑇 expansion. The physical phase-space region is delimited by the grey line.
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